
Thoughts about
 Trusted Computing

Joanna Rutkowska

Confidence, Krakow, Poland, May 15-16, 2009
EuSecWest, London, UK, May 27-28, 2009

The Invisible Things Lab team:

Joanna
Rutkowska

Alexander
Tereshkin

Rafal
Wojtczuk

Vista Kernel Protection bypass (2006, 2007)

BluePill w/ Nested virtualization (2006-2008)

Xen hypervisor compromises (2008)

Chipset/CPU security bypass: SMM attacks (2008, 2009)

Intel TXT bypass (2009)

Our recent research:

TC’s basic building blocks

Practical examples of TC

Theory vs. reality

1

2

3

Trusted Computing

Goal: more secure desktop computers!

Solution:
A hardware element responsible for checking all (or part) of the

software running on this platform

Requires software that is TC-aware!
(just the fact you buy TC-compatible hardware, doesn't make your system automatically more secure)

http://www.trustedcomputinggroup.org/

Members: AMD, Intel, IBM, Microsoft, Sun, Lenovo, HP,

http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org

Basic Building Blocks

Building Block #1: Trusted Platform Module (TPM)

The core component of TC

TPM 1.2
 Passive I/O device (master-slave)
 Special Registers: PCR[0...23]
 Interesting Operations:

 Seal/Unseal,
 Quote (Remote Attestation)
 some crypto services, e.g. PRNG, RSA, key gen

PCR registers

TPM 1.2 has at least 24 registers that can hold 160-bit values

PCR “extend” operation

PCRN+1 = SHA-1 (PCRN | Value)

 A single PCR can be extended multiple times
 It is computationally infeasible to set PCR to a specified value
 (ext(A), ext(B)) ≠ (ext(B), ext(A))

The most basic application...

Static Root of Trust Measurement (SRTM)

BIOS ROM BIOS FLASH BOOT LOADER OS kernel

TPM

PCI
ROMs

PC
R

0

PC
R

1

PC
R

2

PC
R

3

PC
R

4 ...

PCR Usage (convention)

0 BIOS ROM & FLASH

1 Chipset config

2 PCI ROMs

3 PCI config

4 bootloader

5 bootloader config

6 ...

7 ...

8 e.g. OS kernel

Why PCRs are so important?

Because of the Seal and Quote operations

TPM

PCR 17

PCR 18

PCR 19

0x12345678abcdef01...

0x22443dd937495955...

0xaaa9244ff3445574...

TPM: Seal/Unseal Operation

secret (key)

secret (key)

sealing

unsealing

TPM: Quote Operation (Remote Attestation)

TPM

PCR 17

PCR 18

PCR 19

0x12345678abcdef01

0x22443dd937495955

0xaaa9244ff3445574

[PCR17,18,19] +
signature (AIK)

TPM is passive!
It doesn't have a DMA engine -- cannot access host memory

Building Block #2: Intel Trusted Execution Technology
(TXT)

... AKA LaGrande
(renamed some 2 years ago)

Dynamic Root of Trust Measurement (DRTM)

SENTER — one of a few new instructions introduced by TXT
(They are all called SMX extensions)

VMM VMM
SENTER

A VMM we want to load
(Currently unprotected)

The VMM loaded and its
hash stored in PCR18

TPM

PC
R

18 TPM will unseal
secrets to the just-

loaded VMM only if it
is The Trusted VMMsecret key

Notes:
 Diagram is not in scale!
 SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

TXT late launch can transfer from unknown/untrusted/
unmeasured system…
to a known/trusted/measured system
Without reboot!

The system state ("trustedness") can be verified (possibly
remotely) because all important components (hypervisor,
kernel) hashes get stored into the TPM by SENTER.

SENTER will not block loading of untrusted VMM!

SENTER is not obligatory!!!
TXT and TPM: cannot enforce anything on our hardware! We can always choose not to execute SENTER!

So what is this all for?

Why would a user (or an attacker for that matter) be interested
in executing the SENTER after all?

It’s all about TPM PCRs and secrets sealed in TPM!
(alternatively: about Remote Attestation)

SRTM vs. DRTM

Problems with SRTM

COMPLETENESS — we need to measure every possible piece
of code that might have been executed since the system boot!

SCALABILITY of the above!

BIOS ROM BIOS FLASH BOOT LOADER OS kernel

TPM

PCI
ROMs

PC
R

0

PC
R

1

PC
R

2

PC
R

3

PC
R

4 ...

PCR Usage (convention)

0 BIOS ROM & FLASH

1 Chipset config

2 PCI ROMs

3 PCI config

4 bootloader

5 bootloader config

6 ...

7 ...

8 e.g. OS kernel

What would happen if this piece of
code was not measured?

For SRTM to make sense all possible code that might be executed
should be measured and its hash stored in a PCR!

This might be hard in practice and this is why we have DRTM

Building Block #3: Intel Virtualization Technology (VT)

VT-x -- CPU virtualization
VT-d -- Device virtualization/remapping (IOMMU)

Intel VT

VT-d is crucial for TXT...

VMM

The VMM loaded and its
hash stored in PCR18

VT-d

DMA

VT-d protects the VMM against malicious DMA attacks from PCI devices

Intel TPM, TXT, VT-d

AMD TPM, Presidio, IOMMU

TC technology on today's computers

Examples of Trusted Computing

#1: Evil Maid

So, you're a paranoid person and use disk encryption?

Feel secure against Laptop thieves?

Problem: The Evil Maid

Laptop left alone in a hotel room...

1. Evil Maid sneaks in and boots laptop from the Evil USB.
The USB infects MBR on your laptop (e.g. BluePillBoot)
Operating time: 3 minutes

2. User comes, boots the laptop, and enters passphrase...
BluePillBoot sniffs the decryption key and saves it
somewhere, or transmits over the network...

3. Evil Maid can now steal the laptop -- she can decrypt it!

Have you ever left your laptop(s) unattended?

How TPM can help?

Trusted Boot

Disk encrypted with a key k, that is sealed into the TPM...
Now, only if the correct software (i.e. uninfected!) gets
started it will get access to the key k and would be able to
decrypt the disk!
MS’s Bitlocker works this way.

But...

The Evil maid infects MBR that displays a fake password prompt
(e.g. fake Bitlocker PIN screen)
It stores the key on some unencrypted portion of disk (or send
it via the network card) -- still before booting the OS...
Th Evil Loader cannot hand down execution to Bitlocker -- it
would not boot the system. So, it pretends the password/PIN
entered was wrong and reboots the system (but first it restores
the MBR to the original one)

A really paranoid user should thus destroy his/her laptop, if
entered correct password, but the OS didn't boot!

or...

User’s Picture Test

During installation, a user takes a picture of themselves using a
built-in in laptop camera...
This picture is stored on disk, encrypted with key kpic, which is
sealed by the TPM…
Now, on each reboot — only if the correct software got
loaded, it will be able to retrieve the key kpic and present a
correct picture to the user. Only then the user enters the
passphrase!
Important: after the use accepts the picture, the software should
extend PCR’s with some value (e.g. 0x0), to lock access to the
key kpic

This way the Evil Maid cannot prepare a fake Bitlocker prompt!

No Big Deal!

h/w keyboard sniffer
hidden camera
e/m leak

} solution: keyfiles,
tokens, etc

source: http://xkcd.com/

http://xkcd.com
http://xkcd.com

#2: "Chinese" Hardware Backdoors

How many laptops/parts are made in China*?

*Substitute with your favorite evil country

Afraid of malicious vendors?

A "Made in China"* PCI-based backdoor?

*Substitute with your favorite evil country

CPU

DRAMDRAMDRAMDRAM
Northbridge

(e.g. Intel Q45)

Southbridge
(e.g. Intel ICH10)

Graphics

Ethernet

WiFi

Keyboard

USB

1394SATA

PCI bus

FSB

DMI

PCIe

PCI bus

CPU

DRAMDRAMDRAMDRAM
Northbridge

(e.g. Intel Q45)

Southbridge
(e.g. Intel ICH10)

Graphics

Ethernet

WiFi

Keyboard

USB

1394SATA

PCI bus

FSB

DMI

PCIe

PCI bus
DMA

DMA

DMA

DMA

DMA

DMA

Each device that has a DMA engine can access the
whole system memory! Including kernel!

Southbridges (e.g. Intel ICHx) have many PCI devices integrated, e.g.:
 SATA controllers
 USB controllers/hubs
 1394/Firewire controllers
 Ethernet cards
 etc...

How TC comes into play?

CPU

DRAMDRAMDRAMDRAM
Northbridge

(e.g. Intel Q45)

Southbridge
(e.g. Intel ICH10)

Graphics

Ethernet

WiFi

Keyboard

USB

1394SATA

PCI bus

FSB

DMI

PCIe

PCI bus

TPM

VT-d

VT-x

TXT

TXT

VT-d can block unwanted DMA from devices

(Trusted) Hypervisor

OS

Hardware

Some
driver

Some
device

I/O: asks the
device to
setup a DMA
transfer

Read/Write
memory access!

Xen and VT-d

(Trusted) Hypervisor

OS

Hardware

IOMMU/VT-d

ring3/ring0
separation

malicious DMA

ring 3 (x86_64)
ring 1 (x86)

ring 0

blocked!

VT-d can be programmed to allow DMA from devices only to limited
memory addresses (e.g. occupied by specific driver(s))

Hypervisor

DomU DomU Dom0

Driver

BackendFrontend

VT-d allows this NIC only to
access this driver domain's
memory

Malicious firmware?

CPU

DRAMDRAMDRAMDRAM
Northbridge

(e.g. Intel Q45)

Southbridge
(e.g. Intel ICH10)

Graphics

Keyboard

FSB

DMI

PCIe

PCI bus

SPI
SPI-flash

Malicious BIOS?

We shall fear it not!

TXT for the rescue!
With DRTM we do not need to trust the BIOS!

We do not need to maintain a chain of trust starting from CRTM!

Conclusion: VT-d and TXT should be able to protect us against
malicious hardware backdoors!

Let's repeat it, as it is important conclusion...

Conclusion: VT-d and TXT should be able to protect us against
malicious hardware backdoors!

...except...

...except for the backdoors in the chipset or CPU!

Shall we trust Intel or AMD?

Building in a backdoor into a processor is trivial

if (rax == MAGIC_1 && rcx == MAGIC_2) {cpl=0; jmp [rbx];}

A local priv-escalation "enabler":

... only a few more gates ;)

How many people can reverse engineer a processor?

But TC does not make it any easier!
It's totally irrelevant whether TC is present or not.

...yet at the same time TC protects against many other possible
hardware backdoors.

#3: Evil DRM?

You don't use TXT to load e.g. tetris.exe
(or mediaplayer.exe for that matter)

You use TXT to load a VMM (hypervisor)!

in other words you use it to load the whole system!

hypervisor

kernel & drivers (e.g. Windows)

system libs/services

IE Media
Player

Word

hypervisor

kernel & drivers (e.g. Windows)

system libs/services

IE Media
Player

Word

TXT

1. VMM securely loads the kernel,
2. Kernel securely loads the drivers,
3. Kernel securely loads libs/services,
4. Kernel securely loads critical apps (e.g. media player).

Sounds good?

But what about runtime compromises?

1. VMM should make sure kernel cannot be compromised!
2. Kernel/VMM should make sure drivers cannot be compromised!
3. Kernel should make sure libs/services cannot be compromised!
4. Kernel should make sure securely loads critical apps (e.g. media player)
cannot be compromised!

Here we protect against compromises at runtime!

Protecting against driver compromise at runtime is possible if drivers
were properly isolated and IOMMU was used.

But this means a total redesign of Windows architecture!
Effectively, a migration towards microkernel-based OS!

Can you imagine MS doing this anytime soon?

Protection against runtime application compromise is simply
infeasible today and in the near future!

(People has been announcing the end of buffer overflows
for nearly a decade -- but no visible progress in practice)

TXT as a protection of your core OS components: yes
TXT as a protection of all the Apps: no!

Example #1: Evil Maid
Example #2: Chinese backdoors
Example #3: DRM

There are more...

Theory vs. Reality

Attacking Trusted Computing

Hardware-based Attacks Software-only Attacks

Requires physical access to the machine;
Cannot be used by malware Ideal for malware

Hardware Attacks

Hardware-based attacks: not such a big deal, really!

 TPM reset attacks using a metal clip
 LPC bus interceptions
 Reading TPM nv-storage using microscope
 etc.

but...

TPM getting integrated into chipsets
e.g. Intel ICH10 has integrated TPM

Now attacker needs to intercept DMI bus (2GB/s)
+ the communication might(*) be encrypted

(*) We haven't checked if this channel is encrypted on Q45/ICH10 chipset. But could be.

But even a successful physical attack on TPM (that
might even result in obtaining all the keys), doesn't

automatically allow to e.g. bypass user disk encryption
(e.g. Bitlocker)

TPM is only needed to provide trusted boot -- the booted
application is still required to obtain the password from the user

So, a successful attack on TPM could, at best, allow for a successful
Evil Maid attack that we discussed before.

(Without TPM this attack is always possible)

Software Attacks

Attacks against SRTM

OSLO: Improving the security of Trusted Computing
 by Bernhard Kauer, 2007

Kauer's attacks:
1. Buggy bootloaders that do not maintaing complete chain of trust
2. TPM 1.1 software reset
3. Intercept some BIOS'es CRTM

This was in 2007 and most problems fixed now.

Also, the attacks didn't affect the core technologies
(TPM attack was against 1.1, not 1.2)

Attacks against DRTM (TXT)

Attacking Intel TXT
by ITL, Feb 2009, Black Hat DC

TXT attack sketch (using tboot+Xen as example)

GRUB (1st stage)

GRUB (2nd stage)

tboot.gz

Disk

xen.gz

Attacker patches the
bootloader (e.g. GRUB). The

patched code injects a
shellcode to SMM

SMRAM

Evil shellcode will infect the
Xen hypervisor later...

After xen.gz gets sucesfully
loaded, the evil code from

SMRAM can easily infect it...

Notes:
 Diagram is not in scale!
 SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

SENTER

Solution to the TXT attack is called: STM

I
n

t
e

l

Can we take a look at this STM?

STM is currently not available.

?

It is simple to write. There was just no
market demand yet.

?

In
v

isib
le

 T
h

in
g

s L
a

b

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

~ February 2009

Is there any STM out there today?

I haven't heard of one yet...

TXT is bypassable on systems that do not have STM
(well, on most (all?) systems today)

Launch time protection vs. runtime protection

VM1 VM2 VM3
Management

Domain

hypervisor

MBR/
BIOS

SRTM/DRTM
(launch-time protection)

e.g. buffer overflow
(no runtime protection!)

By definition TXT/TPM cannot solve the problem of runtime attacks,
such as buffer overflows.

VT-d can help though (by isolating drivers)

Think about TC as of a way to provide trusted boot
(launch-time protection)

...even that would be a big deal though

Final Thoughts

You shall not fear TPM and TXT

TC has potential to rise the bar for desktop security
(assuming the software will properly exploit them)

TPM, VT, and TXT are cool!

... as is the challenge of breaking them ;)

New Stuff Coming Soon...

This Summer

http://invisiblethingslab.com

http://invisiblethingslab.com
http://invisiblethingslab.com

