
Preventing and Detecting
Xen Hypervisor

Subversions
Joanna Rutkowska & Rafał Wojtczuk

Invisible Things Lab

Black Hat USA 2008, August 7th, Las Vegas, NV

Xen 0wning Trilogy

Part Two

Previously on Xen 0wning Trilogy...

Part 1: “Subverting the Xen Hypervisor”
by Rafal Wojtczuk (Invisible Things Lab)

 Hypervisor attacks via DMA
 TG3 network card “manual” attack
 Generic attack using disk controller

 “Xen Loadable Modules” framework :)
 Hypervisor backdooring

 “DR” backdoor
 “Foreign” backdoor

Now, in this part...

Protecting the (Xen) hypervisor

... and how the protection fails

Checking (Xen) hypervisor integrity

... and challenges with integrity scanning

1

2

3

4

Dealing with DMA attacks

(Trusted) Hypervisor

OS

Hardware

Some
driver

Some
device

I/O: asks the
device to
setup a DMA
transfer

Read/Write
memory access!

Xen and VT-d

(Trusted) Hypervisor

OS

Hardware

IOMMU/VT-d

ring3/ring0
separation

malicious DMA

ring 3 (x86_64)
ring 1 (x86)

ring 0

blocked!

Rafal’s DMA attack (speech #1)
will not work on Xen 3.3
running on Q35 chipset!

Intel DQ35JO motherboard: First IOMMU for desktops!
(available in shops since around October 2007)

 Intel Core 2 Duo/Quad
 Up to 8GB RAM
 TPM 1.2
 Q35 Express chipset
 VT-d (IOMMU)

System hangs (VT-d prevented the attack)

So, how to get around?

Break ring3/ring0
separation?

Break VT-d
protection?

So, how to get around?

(Trusted) Hypervisor

OS

Hardware

None of them! :)

The slide has been removed upon request from Intel.
(it will be published after the patch is available from Intel)

The slide has been removed upon request from Intel.
(it will be published after the patch is available from Intel)

The slide has been removed upon request from Intel.
(it will be published after the patch is available from Intel)

The slide has been removed upon request from Intel.
(it will be published after the patch is available from Intel)

The slide has been removed upon request from Intel.
(it will be published after the patch is available from Intel)

The slide has been removed upon request from Intel.
(it will be published after the patch is available from Intel)

Demo: modifying Xen 3.3 hypevisor from Dom0

Demo

TODO

This attack is not limited to Q35 chipsets only!

This attack can also be used to modify
SMM handler on the fly, without

reboot!

So, whose fault it is?

Xen’s fault?

• Allowing Dom0/Driver domains to
access some chipset registers might be
needed for some reasons... (Really?)

• But Xen cannot know everything about
the chipset registers and features!

Chipset’s fault?

• Maybe chipset should do some basic
validation of XXX

The details have been
removed upon

request from Intel.
(it will be published after the patch is

available from Intel)

BIOS’s fault?

• Intel told us that using a special lock
mechanism is recommended in the Intel’s
BIOS Specification (*)

• Obviously, we’re not talking about D_LCK!

• That lock should prevent our attack

• So, this seems to be the BIOS Writer’s fault
in the end...

(*)This document is available only to Intel partners (i.e. BIOS vendors).

Related attacks

• Loic Duflot (2006) - jump to SMM and then to
kernel from there (against OpenBSD securelevel).
Now prevented by most BIOSes (thanks to the
D_LCK bit set).

• Sun Bing (2007) - exploit TOP_SWAP feature of
some Intel chipsets to load malicious code before
the BIOS locks the SMM and get your code into
SMM. But this requires reboot. Now prevented by
BIOSes setting the BILD lock.

Lesson: protecting hypervisor memory is hard!

“Domain 0” Disaggregation

Driver domains

Hypervisor

DomU DomU Dom0

Driver

BackendFrontend Frontend

Hypervisor

DomU DomU Dom0

Driver

BackendFrontend

 IOMMU/VT-d needed for delegating drivers to other
domains (otherwise we can use DMA attacks from DomU)

Advantage: compromise of a driver != Dom0 access

Stub domains

Hypervisor

HVM
(e.g. XP)

Dom0

qemuIN/OUT

Usermode process
that runs as root in
Dom0 (Device
Virtualization Model)

Hypervisor

HVM
(e.g. XP)

Dom0

qemuIN/OUT

“stub” domain

Now:
qemu compromises !=
Dom0 comrpomise

PyGRUB vs. PVGRUB

Hypervisor

PV
domain

Dom0

PyGRUB

Runs in Dom0 with
root privileges and
process the PV domain
image (untrusted)

PV image

Hypervisor

PV
domain

Dom0

PVGRUB

PV image

Xen vs. competition?

Xen 3.3 Hyper-V (**) ESX

IOMMU/VT-d support?

Hypervisor protected from
the Admin Domain

(including DMA attacks)?

Driver domains?

I/O Emulator placement?
(Device Virtualization)

Trusted Boot support?
(DRTM/SRTM)

Yes No ?

Yes No ?

Yes
(drivers in unprivileged

domain)

No
(drivers in the root domain)

No?
Drivers in the

hypervisor?! (*)

Unprivileged
Domain

(“stub domains”)

Unprivileged
process

(vmwp.exe running as
NETWORK_SERVICE in the root

domain)

?

Yes
Xen tboot: DRTM via Intel

TXT
No ?

(*) based on the VMWare’s presentation by Oded Horovitz at CanSecWest, March 2008 (slide #3)
(**) based on the information provided by Brandon Baker (Microsoft) via email, July 2008

Ok, so does it really work?

Yes! No doubt it’s a way to go!

Xen is well done!

but...

Overflows in hypervisor :o

So far, not a single overflow in Xen 3 hypervisor found!

... until Rafal looked at it :)

The FLASK bug

What is FLASK?

FLASK

• One of the implementation of XSM

• XSM = Xen Security Modules

• XSM is supposed to fine grain control over
security decisions

• XSM based on LSM (Linux Security Modules)

XSM

sHype (IBM) FLASK (NSA)

FLASK is not compiled in by default into XEN

Ok, so where are the bugs?

Passed as hypercall arguments

page buffer is always 4096 bytes big!

Passed as hypercall arguments

Yes this is sscanf()! Welcome back 90’s!

So, how do we exploit it?

struct xmalloc_hdr
{
 size_t size;
 struct list_head freelist;
} __cacheline_aligned;

struct list_head {
 struct list_head *next, *prev;
};

Step 1: flask_user (buf, 8192)

the page
buffer (4k)

xmalloc_hdr

the user
buffer (8k)

81
92

16
38

4

xmalloc_hdr

We set: buf[8192-hdr_sz]=999
Then buf overwrites page...
... and user hdr’s size field gets a new value!

size = 999
After freeing buf xmalloc will put it

on a list of small free chunks and use
for the next allocation of a small chunk!

‘999’ is a cosmic constant that
satisfies the requirement:
sizeof (struct xenoprof) < 999 < 4096

“Small” chunks: chunks for buffers
that are less then 4096 byteshi

gh
er

 a
dd

re
ss

es

Step 2: flask_relabel (buf, 8192)

the tcon
buffer (8k)

xmalloc_hdr

xenoprof

xmalloc_hdr

16
38

4

some pointers that are later nullified by
xenoprof_reset_buf()...

... so if we write addr there, then...

we will get (long)0 written at addr :)

Step 3: freeing xenoprof buffer

xenoprof_enable_virq();

What we got?
A write-zero-to-arbitrary-address primitive

What to overwrite with zero?
How about the upper half of some hypercall address?

This way we will redirect it to usermode!

Demo: Escape from DomU using the FLASK bug

The bug has been patched on July 21st, 2008:

changeset: 18096:fa66b33f975a
user: Keir Fraser <keir.fraser@citrix.com>
date: Mon Jul 21 09:41:36 2008 +0100
summary: [XSM][FLASK] Argument handling bugs in XSM:FLASK

BTW, note the lack of the “security” word
in the patch description ;)

mailto:keir.fraser@citrix.com
mailto:keir.fraser@citrix.com

No Planet
0wning!

Can we get rid of all bugs in the hypervisor?

Xen hypervisor complexity

0

80,000

160,000

240,000

320,000

Xen 3.0.4 Xen 3.1.4 Xen 3.2.1 Xen 3.3-unstable(**)

Lines-of-Code in Xen 3 hypervisors in ring 0 (*)

Calculated using: find xen/ -name ".[chsS]" -print0 | xargs -0 cat | wc -l
**Retrieved from the Xen unstable mercurial on July 24th, 2008

Trend a bit disturbing...
Xen hypervisor grows over time,

instead of shrinking :(

0

100,000

200,000

300,000

400,000

Xen 3.3-unstable Hyper-V(*)

Lines-of-Code: Xen 3.3 vs. Hyper-V

(*) based on the information provided by Brandon Baker (Microsoft) via email, July 2008

Lessons learnt

• Hypervisors are not special!

• Hypervisor can be compromised too!

• Computer systems are complex!

• Prevention is not enough!

Prevention not enough!

Ensuring Hypervisor Integrity

Integrity Scanning

Integrity Scanning

Ensure the hypervisor’s
code & data are intact

Ensure no untrusted
code in hypervisor

hypervisor
code data

data
data

data

data

data
hy

pe
rv

is
or

Code is easy to verify...
... but data is not!

hypervisor
code data

data
data

data

data

data
hy

pe
rv

is
or

XXX

Executable page with
untrusted code

Ensuring no untrusted code in the hypervisor

1. Read hypervisor’s CR3

2. Parse Page Tables and find all pages that are
marked as executable and supervisor in their PTEs

3. Verify the hashes of those code pages remain
the same as during the initialization phase

4. Also: ensure some system wide registers were
not modified (CR4, CR0, etc)

To make it work...

• Hypervisor must strictly apply the NX bit
(only code pages do not have NX bit set)

• No self-modifying code in the hypervisor

• Hypervisor’s code not pageable

Xen hypervisor can meet those
requirements with just few cosmetic

workarounds

Hyper-V already meets all
those requirements!

(Brandon Baker, Microsoft)

... but, there are traps!

Trap #1
Rootkit might keep its code in the
usermode pages - CPU would still

execute them from ring0...

Hypervisor

DomU DomU Dom0

XXX XXX XXX

xxx

CPU should refuse to execute code from
usermode pages when running in ring0

Marketing name: “NX+” or “XD+” :)

Talks with Intel in progress...

Trap #2
Code-less backdoors!

‘jmp rdi’ or more advanced ret-into-libc stuff
(don’t think ret-into-libc not possible on x64!)

xxx

code
jmp rdi

IDT

Anybody who can issue INT XX
can now get their code executed

in ring0 in the hypervisor!

There only few structures (function pointers) that could be
used to plant such backdoor!

This is few comparing with lots of if we were to check all
possible function pointers

Examples for Xen: IDT, hypercall_table, exception_table

Hypervisor should provide a sanity function that would be
part of the code (static path) that would check those few

structures.

HyperGuard doesn’t need to know about those few
structures.

Trap #3
We only check integrity at the very moment...

when we check integrity...
What happens in between?

When should we do the checks?

time

ch
ec

k

ch
ec

k

ch
ec

k

ch
ec

k

??? ??? ???

Solution?

Oh, come on, we need to leave a few aces up in our
sleeves ;)

Introducing HyperGuard...

HyperGuard is a project done in
cooperation with Phoenix Technologies

hypervisor
code

data

data

data

hy
pe

rv
is

or
do

m
ai

ns

SMM
handler

Hyper
Guard

Phoenix BIOS

Why in SMM?

SMM
handler

PCI device Chipset

tamper
proof?

access to
CPU state
(e.g. registers)

reliable
access to
DRAM

should be :)
(depends very

much on the BIOS
-- see the Q35 bug)

yes yes

yes no no

yes
no

(e.g. IOMMU, other
redirecting tricks)

yes
(can deal with

IOMMU)

Combining chipset-based scanner (see Yuriy
Bulygin’s presentation) with SMM-based scanner

seems like a good mixture...

de
le

ga
te

 m
em

or
y

ha
sh

in
g

hypervisor
code

data

data

data

hy
pe

rv
is

or
do

m
ai

ns

SMM
handler

Hyper
Guard

Phoenix BIOS

Chipset

en
su

re
 in

te
gr

ity

Combining SMM + chipset integrity scanning

SMM
handler

PCI
device

Chipset SMM +
chipset

tamper
proof?

access to
CPU state
(e.g. registers)

reliable
access to
DRAM

should be :) yes yes yes

yes no no yes

yes no yes yes

Additionally chipset could provide fast hash
calculation service to the HyperGuard

But we should keep the chipset based
scanner as simple as possible!

The deeper we are the simpler we are!

Talks with Intel in progress...

HyperGuard might also be used in the future to verify
integrity of normal OS kernels (e.g. Windows or Linux)

Slides available at:
http://invisiblethingslab.com/bh08

Demos and code will be available from the same
address after Intel releases the patch.

http://XXX
http://XXX

Credits

• Brandon Baker (Microsoft), for providing
lots of information about Hyper-V (that we
haven’t played with ourselves yet)

Thank you!

Xen 0wning Trilogy to be continued in:

“Bluepilling The Xen Hypervisor”

by Invisible Things Lab

