
Attacking Intel TXT® via SINIT code execution hijacking

Rafal Wojtczuk
rafal@invisiblethingslab.com

Joanna Rutkowska
joanna@invisiblethingslab.com

November 2011

Abstract
We present a software attack against Intel® TXT that exploits an implementation problem within a so
called SINIT module. The attack allows to fully bypass Intel TXT, Intel Launch Control Policy (LCP),
and additionally also provides yet-another-way to compromise SMM code on the platform.

1 What is Intel TXT?

For a basic introduction to Intel® Trusted Execution
Technology (TXT), the reader is referenced to our
previous paper on this topic [1], or alternatively, for
a much more complete and in-depth introduction, to
the updated book by David Grawrock [3], and also
to the MLE Developer’s Guide [4].

2 Prior work on attacking Intel
TXT

In early 2009 our team presented an attack against
Intel TXT that exploited a design problem with Sys-
tem Management Mode (SMM) being over privileged
on PC platforms and able to interfere with TXT
launch [1].

A year later we demonstrated a different attack
against Intel TXT, this time exploiting an implemen-
tation bug in a so called SINIT module, an internal
part of the Intel TXT infrastructure. The attack
worked by tricking SENTER into mis-configuring
VT-d setup, so that the attacker could compromise
the newly loaded hypervisor using a DMA attack[2].

3 On Attacking Intel TXT

The attack presented in this paper assumes, as usual,
that the attacker can execute code before the TXT
launch, i.e. before the SENTER instruction. The
attacker’s goal is to either 1) be able to compromise
the newly loaded hypervisor, even though is has just
been “securely” loaded by TXT (and this is exactly
how our previous two attacks worked), or 2) be able
to load arbitrary hypervisor, yet make it seem as if
it was a trusted one by making all the PCR hashes
to be correct. This is how the attack presented today
works.

Our new attack exploits a bug in an SINIT module.
Before describing the bug, let’s make a quick recap
on what is the role of SINIT in Intel TXT.

4 About Authenticated Code
(AC) modules and SINIT

SINIT is an important binary module that is used
by Intel TXT. SINIT binaries are distributed by In-
tel for specific chipsets/processors, and the task of an
SINIT module is to prepare the platform for entering
the TXT secure mode.1 SINIT module is loaded and

1One can download SINIT modules from
http://software.intel.com/en-us/articles/

1

executed by the SENTER instruction. SINIT must
be digitally signed by Intel for the SENTER instruc-
tion to load and execute it. SINIT is thus also called
an Authenticated Code Module (AC Module). There
is at least one other example of an AC Module dis-
tributed by Intel, the SCLEAN AC Module, that can
be loaded by ENTERACCS instruction and is sup-
posed to be used by a TXT-aware BIOS to wipe the
system memory in the event of an unexpected system
shutdown.2

An AC Module, such as an SINIT, when loaded us-
ing the SENTER or ENTERACCS instructions3, ex-
ecutes in a specially protected and privileged envi-
ronment. There seem to be some differences between
the environment provided by the ENTERACCS vs
that provided by the SENTER instruction, and so
we focus further on the latter case, and we will call
this special privileged environment, or mode of exe-
cution, an “SINIT mode”.

One task of the SINIT module is to read and parse
platform configuration as exposed by the BIOS ACPI
tables, and specifically by the ACPI DMAR table
that describes the VT-d configuration of the plat-
form.4

5 The SINIT bug

SINIT code is written in a regular x86 assembly, so
it is possible to disassemble it using standard x86
tools for binary analysis. Below is a fragment of the

intel-trusted-execution-technology/
2If (an incorrectly implemented) BIOS doesn’t execute

SCLEAN module after an unexpected platform shutdown oc-
curred, so no clean TXT exit was performed, the chipset will
block access to DRAM until SCLEAN module is loaded an ex-
ecuted. This will effectively make the platform “bricked”, as
we have an occasion to witness ourselves a few times. . .

3Intel pointed out that SINIT will fail if loaded using EN-
TERACCS.

4In fact the primary’s job of SINIT module is to verify the
ACPI tables, not to really use the information they provide.
SINIT module is smart enough to extract most (all?) informa-
tion that the ACPI tables communicate using various chipset
registers, often undocumented. However, verifying ACPI ta-
bles correctness is an important task because the MLE (e.g. a
hypervisor) that loads later relies on those ACPI tables.

SINIT code for Sandy Bridge processors (disassem-
bly created using the objdump tool, comments added
manually):

6675: mov (%edi),%esi
6677: cmpl $0x52414d44,(%esi)
; (DWORD*)esi == ’DMAR’?

667d: je 0x6697
...
6697: mov (%edi),%edi
6699: mov %edi,%es:0xa57
; var_a57 = &dmar

66a0: mov 0x4(%edi),%ecx
; ecx = dmar.len

66a3: push %ecx
66a4: add %edi,%ecx
66a6: mov %ecx,%es:0xa5b
; var_a5b = &dmar + dmar.len

...
6701: mov %es:0xa47,%edi
; edi = var_a47 (memory on the TXT heap)

6708: mov (%edi),%eax
670a: mov %es:0xa5b,%ebx
; ebx = &dmar + dmar.len

6711: sub %es:0xa57,%ebx
; ebx = dmar.len

...
6738: mov %es:0xa57,%esi
; var_a57 = &dmar

673f: mov %ebx,%ecx
6741: rep movsb %ds:(%esi),%es:(%edi)
; memcpy (var_a47, dmar, dmar.len)

We see that the above code fragment first reads the
DMAR ACPI table length, as indicated by the length
field in the untrusted ACPI DMAR header, and then
attempts to copy this ACPI table onto a buffer lo-
cated on the TXT heap. The copying loop (the
rep movsb instruction) is happily copying as many

2

bytes as the untrusted ACPI DMAR table indicated.
The ACPI tables are untrusted because an attacker
who controls the pre-TXT boot environment, e.g. in-
fected the system’s MBR, is able to freely modify
the in-memory ACPI tables that have originally been
published by the BIOS. The ACPI tables are not dig-
itally signed, so it’s not possible to detect such mali-
cious modifications of the ACPI tables. 5

6 The SINIT code execution
exploit

Normally the SINIT code is placed before the TXT
heap as illustrated on figure 1. This is the default lay-
out that is expected to be created by system software
as described in [4].

In order to take advantage of the overflow in the
SINIT code discussed above, we should rearrange the
memory layout and place the TXT heap (or at least
some parts of it) above the SINIT code, so that the
overflowing data could overwrite the SINIT code.

It seems like a trivial task, because the system soft-
ware (so also the attacker in this case) controls the
base address of the TXT heap base address via
TXT.HEAP.BASE register, see [4].

Unfortunately, it turned out that if one attempted
to reverse the layout of the heap and SINIT, then
SENTER would return an error. Specifically, we have
seen a code in the SINIT module that specifically
checked whether the heap is located below the SINIT
code. This might suggest Intel has been anticipating
potential bugs in SINIT code, and wanted to prevent
SINIT code overwrites in such cases.

We have found, however, another way of how to relo-
cate heap before the SINIT code. It turned out this
could be achieved by changing the size field of the

5In fact, even if the ACPI tables were digitally signed by the
BIOS, this would still not be a satisfactory solution here, as
it would mean the TXT trusts the BIOS to be non-malicious,
while one of the main selling points of Intel TXT is that it
doesn’t need to trust the BIOS.

Figure 1: Normally the TXT heap is expected to
be below the SINIT code (in terms of numerical ad-
dresses).

first TXT heap’s chunk6 to be effectively negative as
illustrated as illustrated on figure 2.

The SINIT code that reads and copies the DMAR
table will place it within the TXT heap chunk called
SinitMleData (the last one). This is where the over-
flow will start at. Now, by providing large enough
DMAR table the attacker is able to overflow the
SINIT code.

In order to exploit the overflow for arbitrary code
execution, we have found a function that is located
before the rep movsb instruction, but which is called
afterwards – see figure 3. Thus, by overwriting this
function with a custom shellcode, we can easily get
arbitrary code executed in the context of the SINIT
mode.

Even if there was no such function, we could still
exploit it by overflowing past the rep movsb instruc-
tion, while preserving the rep movsb (overwriting it
with itself), although we haven’t tried that in prac-

6See [4] for description of the heap chunks

3

Figure 2: We have modified the first chunk’s size
field to be negative, and now most of the heap is
considered to be above the SINIT code.

Figure 3: The function Some Function is a convenient
target to overwrite. . .

4

Figure 4: Exploiting the SINIT overflow in practice.

tice.

As it turned out, we also needed to preserve some im-
portant data structures at the beginning of the SINIT
area, such as e.g. GDT. We do this by overwrit-
ing this part with the original bytes extracted from
SINIT. This is possible, because we control the whole
DMAR table we use for overwrite (except some early
headers that must be in compliance with the DMAR
spec). Figure 4 illustrates the whole exploitation pro-
cess.

The exploitation process described above is reliable,
because all the offsets are deterministic and depend
only on the actual version of the SINIT module used
for exploitation. The attacker can always download
and analyze the specific SINIT version, before the
attack.

As we can see the actual exploitation process has been
rather straightforward, with only one non-standard
task being the tricky heap layout relocation. Com-

bining this with a fact that exploitation is reliable,
we believe this attack is very practical and could be
easily used by malware in the wild to bypass TXT
and LCP as described below.

7 The SINIT exploitation con-
sequences: TXT bypass

One obvious consequence of the SINIT code execu-
tion exploit is the immediate ability to directly by-
pass TXT-based trusted boot. This is because the
SINIT code executes before most dynamic PCR reg-
isters7 are extended, yet after they have been reset
to 0 by the SENTER microcode.8

In fact only PCR17 is extended at the time the first
instruction of SINIT is being executed – it has been
extended by the SENTER with a hash of the SINIT
module and parameters passed to the SENTER in-
struction. Extension of the other PCRs, specifically
the PCR18 that is normally extended with a hash of
the to-be-loaded MLE, is left as a task for SINIT. . .

Because the SINIT module that we use in this at-
tack is a fully legitimate, Intel distributed, original
SINIT, the PCR17 will be extended with a correct
hash before handing execution to SINIT.

It turned out that SINIT will first parse the DMAR
table, before measuring the MLE and extending the
PCR18. This means that at the time our shellcode
is executing, the PCR18, and other higher-numbered
PCRs, are still set as zero. This means our shellcode
can now freely extend PCR18 with an arbitrary hash,
e.g. a hash of some legitimate MLE, yet can pass
execution to some other MLE, e.g. a malicious one.9

This has been illustrated on figure 5.

7That is PCR registers resettable by SENTER
8All dynamic PCR registers have initial value of -1 after

system boot. Only the SENTER instruction can instruct TPM
to reset those dynamic registers so they have a value of 0.

9A decent SINIT would always pass execution to the same
entity that is has just measured, but our “hacked” SINIT
doesn’t need to be decent anymore!

5

Figure 5: Illustration of TXT bypass process.

When Intel releases a fixed SINIT module, all users
will need to re-seal their secrets to the new SINIT’s
hash in order to prevent the above attack.

8 The SINIT exploitation con-
sequences: LCP bypass

Closely related to TXT bypass (understood as by-
passing of a seal-based or remote attestation-based
trusted boot) is also an ability to use the exploit
above to also bypass the Intel Launch Control Policy
(LCP). Intel LCP is described in detail in [4].

The LCP is enforced by the SINIT module and the
enforcement is done after DMAR table parsing, so
after we exploit SINIT to get our shellcode executed.
This means we can simply skip the LCP enforcing
code, fully ignoring any LCP policy the user might
have set up.

One practical scenario is to ignore a potential LCP
policy that might be blacklisting the very SINIT

module we’re exploiting10. If such an LCP policy
could be enforced, it would be a convenient solution
against our attack. However, because we can trivially
bypass any LCP policy, this would not work to stop
our attack.

9 The SINIT exploitation con-
sequences: SMM hijacking

Another interesting consequence of our SINIT attack
is the ability to compromise the platform’s SMM han-
dler. This is because the SINIT module is normally
granted unlocked access to the SMRAM, as it is in-
dicated in the Intel SDM [5]:

SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP -> ACEntryPoint;

The above is a fragment of a pseudocode for the SEN-
TER instruction. We can see that just before the ex-
ecution is passed to the AC module, in this case our
SINIT module, SMRAM, TXT private space, and lo-
cality 3 are all unlocked. Because our shellcode exe-
cutes in the context of the SINIT module, it means
it will also have access granted to the SMRAM.

Theoretically the SINIT module could be written in
such a way that it voluntarily locks down SMRAM
access right at the beginning, before attempting to
parse DMAR table (so, before our shellcode gets a
chance to execute), but we have verified this was not
the case.

Apart from other SMM-related attacks (e.g. SMM
rootkits), this allows for yet another interesting at-
tack...

Let’s assume that, after we had informed Intel about
the SINIT attack, Intel released an advisory urging
customers to re-seal their secrets to a new PCR17
hash for an updated SINIT module, as explained

10This, of course, assumes that Intel was informed about
this very problem, and that Intel released an advisory for the
attack.

6

above. Now, our direct TXT bypassing attack would
no longer work, because PCR17 would contain a
wrong hash at the time when our shellcode executes.

However, we can now use SINIT exploit to gain ac-
cess to SMRAM (using the buggy SINIT), install a
backdoor in the SMI handler, exit AC mode, and
then re-launch original MLE using the new, patched
SINIT (so performing a legitimate TXT launch).

We have verified that we can indeed modify the SMI
handler from within the SINIT exploit’s shellcode,
exit the SINIT mode (using EXITAC instruction)
and that our SMM modifications survive this opera-
tion. Because the compromised SMI handler survives
also the TXT launch, our backdoor in SMM will now
be able to compromise the newly and legitimately
loaded MLE on the first occurrence of an SMI inter-
rupt (which usually happens immediately after the
MLE enables SMIs), as we have demonstrated in our
first paper on attacking TXT [1].

Intel should be able to fix this problem in two ways:

1. A proper way of addressing this would be to (fi-
nally) release an STM, i.e. a special component,
distributed as part of the BIOS, that is supposed
to sandbox a potentially malicious SMM code.
Interestingly, Intel seems to have been ignoring
this problem for almost 3 years now, that is since
we have demonstrated the first practical TXT-
bypassing attack using a software-compromised
SMI handler back at the beginning of 2009.

2. Intel could also release a microcode update that
would either disable the SMRAM unlocking done
as part of the SENTER instruction, and/or
black-list the buggy SINIT that we use for ex-
ploitation. Additionally, for this protection to
make sense, the microcode update would have
to be applied by the BIOS, so that it was not
possible for the attacker to opt-out the new mi-
crocode (microcode update must be applied on
each platform boot, because it is non-persistent),
and also the new microcode update would need
to modify the existing microcode update proce-
dure to not allow for microcode downgrade, as
otherwise the attacker could simply revert to an

older microcode, which would not be blocking
the buggy SINIT (or disabling SMRAM access)
and conduct all the attack as described above.

If Intel decided to go with the second solution and to
not bring a working STM to its platforms, it would
also have an interesting consequence of including the
BIOS into TXT’s trusted base. This is because if an
attacker was able to subvert the BIOS, e.g. by com-
promising the BIOS anti-reflashing mechanisms11,
then the attacker would be able to opt-out the mi-
crocode update that black-lists the buggy SINIT (or
disables granting access to SMRAM as part of SEN-
TER), and conduct the TXT-bypassing attack de-
scribed above.

10 Other consequences of
SINIT execution hijacking?

Going further, it is an interesting question to ask
what other special powers, beyond free access to SM-
RAM, an AC module, and specifically an SINIT mod-
ule, might potentially posses?

It seems like Intel has put lots of efforts into keep-
ing everybody away from executing arbitrary code
in “SINIT mode”. The whole infrastructure used
for verification of an AC module’s digital signatures
strikes as an unnecessary complication (let’s keep in
mind that this verification process is part of the SEN-
TER instruction’s microcode!). It seems unneces-
sary because for the purpose of doing secure TXT
launches, it is just enough to have SENTER measure
SINIT hash and extend one of the dynamic PCRs
with it, which is exactly what SENTER does (PCR17
is extended with a hash of SINIT). So, why the addi-
tional, non-trivial mechanism for signature verifica-
tion?

One might argue this additional verification mech-
anism was needed to implement Intel LCP policy,
as the policy enforcement code is itself implemented

11We have demonstrated how to bypass Intel vPro BIOS
reflashing protection back in 2009, see [6].

7

within an SINIT module. However, one should re-
member that the Intel LCP is itself an opt-in mecha-
nism. There is really nothing that could force an at-
tacker into executing SENTER (and so going through
the LCP policy), except only a possibility to lock
down VMX mode outside SMX mode12. However, it
seems unclear why an attacker, specifically malware,
should be so keen on enabling VT-x? After all, even
though the first hardware-virtualization malware has
been introduced nearly 5 years ago [7], [8], it still
doesn’t seem to be used in the wild, because currently
used operating systems offer many opportunities for
much simpler, traditional compromises.

Perhaps then, it was all about the SCLEAN module,
i.e. the code that is supposed to be loaded early at
boot stage in case TXT was not cleanly shut down,
and which is tasked with scrubbing DRAM so that
no secretes could be stolen from there [3].

On the other hand, the primary role of the SCLEAN
module is to prevent Cold Boot-like physical at-
tacks [9], and it seems like an easy attack to by-
pass the SCLEAN-imposed protection, would be to
just. . . remove the DRAM dies and put them into an-
other computer, and continue with regular Cold Boot
attack as usual. . . 13

This brings the question again: why Intel im-
plemented a complex digital signature verification
scheme for AC modules, even though it doesn’t seem
to improve security properties of TXT? We shall leave
the reader without an answer here. . .

UPDATE : While reviewing this paper Intel noted
that, unlike we thought, MSEG is measured by
the SINIT module14, rather than by SENTER mi-

12In other words it is possible to configure a platform, typi-
cally by the BIOS, to disallow the use of VT-x without entering
secure TXT mode

13One of the Intel architects, while reviewing this paper,
pointed out that SCLEAN module provides also a protection
against a hypothetical remote Cold Boot attack, where an at-
tacker is able to remotely force (unclean) system reboot, and
is also able to execute code before OS loads, e.g. via infected
MBR, which allows for mounting the Cold Boot attack locally
and leaking the stolen secrets e.g. through a NIC back home.

14MSEG is a part of memory where BIOS is suppose to place
an image of an STM for use with TXT, see [4]

crocode, as we though. This explains why SINIT
module needs SMRAM access. Intel also pointed out
that many OEMs expect both integrity and confi-
dentially for their SMM code15, which is a reason for
allowing only signed SINIT modules to be executed.

11 Intel’s reaction

We have informed Intel about the vulnerability in
SINIT module, together with an extensive discussion
of possible consequences, and suggested patching ap-
proaches, as described above, on July 28th, 2011. In-
tel released the official coordinated advisory on De-
cember 5th, 2011 [10].

Intel has informed us about the following measures
that have been implemented in order to patch the
vulnerability:

1. Releasing updated SINIT modules that fixes the
buffer overflow for all the affected processors.

2. Releasing updated processor microcode that pre-
vents loading and execution of the buggy SINIT
modules. Additionally this microcode update
provides an anti-rollback mechanism, so that it
is not possible to downgrade to a previous mi-
crocode version, once this new update has been
applied.

3. Coordinating with OEM vendors to release BIOS
updates that load the above mentioned mi-
crocode update on system boot. Additionally,
OEM vendors are expected to implement BIOS
anti-rollback mechanism for their BIOSes too.

4. Additionally, as a preventive measure against
possible future problems, Intel has moved the
LCP-enforcing code to the beginning of SINIT
code, so it was possible in the future to black-
list buggy SINIT modules without the need for
microcode and BIOS updates.

15The official argument for confidentiality of the SMM code
being that Intel has architecturally committed to both write-
and read-protecting SMRAM when introduced the SMRAM
lock feature in the chipset, years ago.

8

5. Releasing an advisory for customers, urging
them to 1) update their BIOSes, and 2) reseal
secrets to new PCR17 hashes.

All the newly released SINIT modules for the existing
platforms will now have the previously reserved field
Reserved1 at offset 0x1c in the SINIT header (see [4])
set to 1. All previous (so buggy) SINIT modules have
had this field set to 0. The updated microcode will
refuse to load an SINIT module with Reserved1 field
being 0. Of course an attacker can not just take the
buggy SINIT and change the Reserved1, because the
SINIT module is digitally signed.

12 Summary

1. SINITs are buggy just like any other software.
Intel should consider open sourcing those critical
pieces of code.

2. SINIT compromise allows more than “just” TXT
bypass, e.g. it also allows SMM compromise, and
perhaps something else. . . ?

3. It’s a shame we still don’t see STMs in the wild,
even on Intel platforms!

4. Preventing our attack requires: 1) SINIT patch-
ing, 2) secrets resealing by customers, 3) BIOS
upgrade, and finally 4) adding the BIOS to the
chain of trust. The last two might have been
avoided if we had STMs. . .

13 Acknowledgments

We would like to thank Intel TXT architects, Monty
Wiseman and Joe Cihula, for reviewing the paper,
and providing constructive feedback.

References

[1] Rafal Wojtczuk, Joanna Rutkowska, Attack-
ing Intel Trusted Execution Technology, Jan

2009, http://www.invisiblethingslab.com/
itl/Resources.html

[2] Rafal Wojtczuk, Joanna Rutkowska, Alexan-
der Tereshkin, Another Way to Circum-
vent Intel Trusted Execution Technology, Dec
2009, http://www.invisiblethingslab.com/
itl/Resources.html

[3] David Grawrock, Dynamics of a Trusted Plat-
form: A Building Approach, Intel Press, 2009.

[4] Intel Corporation, Intel® Trusted Execution
Technology, Measured Launched Environment
Developer’s Guide, 2008.

[5] Intel Corporation, Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, vol. 2b.

[6] Alexander Tereshkin, Rafal Wojtczuk,
Attacking Intel® BIOS, Jul 2009,
http://www.invisiblethingslab.com/itl/
Resources.html

[7] Joanna Rutkowska, Subverting Vista Kernel
for Fun and Profit, Black Hat USA, Aug
2006, http://blackhat.com/presentations/
bh-usa-06/BH-US-06-Rutkowska.pdf

[8] Dino Dai Zovi, Hardware Virtualization
Rootkits, Black Hat USA, Aug 2006,
http://www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Zovi.pdf

[9] J. Alex Halderman et al., Lest We Remember:
Cold Boot Attacks on Encryption Keys, http:
//citp.princeton.edu/research/memory/

[10] Intel Security Advisory INTEL-SA-00030,
Dec 5th, 2011, http://security-center.
intel.com/advisory.aspx?intelid=
INTEL-SA-00030&languageid=en-fr

9

