
Another Way to Circumvent Intel® Trusted Execution Technology
Tricking SENTER into misconfiguring VT-d via SINIT bug exploitation

Rafal Wojtczuk Joanna Rutkowska Alexander Tereshkin
rafal@invisiblethingslab.com joanna@invisiblethingslab.com alex@invisiblethingslab.com

---===[Invisible Things Lab]===---

December 2009

Abstract
Earlier this year our team has presented an attack against Intel® TXT that exploited a design
problem with SMM mode being over privileged on PC platforms and able to interfere with the
SENTER instruction. This time we present a different attack that allows an attacker to trick
the SENTER instruction into misconfiguring the VT-d engine, so that it doesnʼt protect the
newly loaded MLE. This attack exploits implementation flaws in a so called SINIT module.

keywords: Intel TXT, Intel VT-d, SINIT, SENTER, Trusted Boot, Attack, Circumvention

1. Introduction
For the basic introduction about Intel® TXT, the
reader is referenced to our previous paper on this
topic [1], or alternatively, for a much more complete
and in-depth introduction, to the updated book by
David Grawrock [2].

The attack presented below assumes the attacker
can execute his or her code before the TXTʼs
SENTER instruction is executed, e.g. by infecting
the boot loader. The attacker code, as we will show
below, can then misconfigure the chipset in such a
way that the SENTER instruction would be unable
to properly setup VT-d protections for the newly
loaded MLE (e.g. hypervisor). As a result, the at-
tacker would be able to compromise the securely
loaded hypervisor using a classic DMA attack.

The Intel® TXT technology has been designed ex-
actly to prevent scenarios like the above. In other
words, Intel® TXT secure launch process assumes
that the system might be compromised before the
SENTER instruction is executed, and yet the
SENTER instruction is expected to securely load
and start the hypervisor. The attack described in
this paper demonstrates this assumption doesnʼt
hold in practice, because of certain implementation
errors.

2. Intel VT-d background information
For the attack described in this paper, it is impor-
tant to understand certain internals of how Intel VT-
d technology is implemented. The reader can find

much more details about VT-d internals in the Intel
official specification [3].

As illustrated on Figure 1, Intel VT-d logic is imple-
mented in the Memory Controller Hub (MCH, also
called the Northbridge). System software, such as
the OS or the hypervisor, can configure each VT-d
remapping unit so that all devices connected under
the particular unit are allowed DMA access to only
certain regions of the system physical memory1.

!"#$%&'()*#+,%)-,#)."'/$01".%.23'4.*'5)*$0#$6'!78
9$:#$;<$*'=>>? @*01)#$0#+*$'9:$0)4)0,#)."'A'B$C'DE=
8*6$*'F+;<$*G'5HDIJKA>>L KI

!"#$%&'()*+,-./*'()0"(/,12%3*-/4.1*5./*'(%6,78('1'9:%;'-%<*-,7/,+%"=#

/1)M':%,#4.*;'*$N+)*$M'L'5BO5'M#*+0#+*$ME'/1$'5$C)0$'90.:$'4)$%6M')"'$,01'5BO5'M#*+0#+*$',*$'
6$M0*)<$6',M'<$%.PE

Q 5$C)0$'90.:$'4.*'*$;,::)"2'1,*6P,*$'+")#'RD'0."#,)"M'."%3'."$'5$C)0$'90.:$'S"#*3T')6$"#)4)$6',M'
U=T'?T'>T'>T'>T'DLT'>VE'

W 93M#$;'9.4#P,*$'+M$M'#1$'S"#*3'/3:$'4)$%6'C,%+$'.4'>X>='#.'0."0%+6$'#1,#',%%'6$C)0$M'
6.P"M#*$,;'.4'#1$'YZ!AYZ!'<*)62$'6$C)0$',#'YZ!'9$2;$"#'>T'[+M'>T'5$C)0$'DLT',"6'\+"0#)."'>'
,*$'P)#1)"'#1$'M0.:$'.4'#1)M'*$;,::)"2'1,*6P,*$'+")#E

Q 5$C)0$'90.:$'4.*'*$;,::)"2'1,*6P,*$'+")#'R='0."#,)"M'."%3'."$'5$C)0$'90.:$'S"#*3T')6$"#)4)$6',M'
U=T'?T'>T'>T'>T'DLT'DVE'

W 93M#$;'9.4#P,*$'+M$M'#1$'S"#*3'/3:$'4)$%6'C,%+$'.4'>X>='#.'0."0%+6$'#1,#',%%'6$C)0$M'
6.P"M#*$,;'.4'#1$'YZ!AYZ!'<*)62$'6$C)0$',#'YZ!'9$2;$"#'>T'[+M'>T'5$C)0$'DLT',"6'\+"0#)."'D'
,*$'P)#1)"'#1$'M0.:$'.4'#1)M'*$;,::)"2'1,*6P,*$'+")#E

Q 5$C)0$'90.:$'4.*'*$;,::)"2'1,*6P,*$'+")#'RI'0."#,)"M'."%3'."$'5$C)0$'90.:$'S"#*3T')6$"#)4)$6',M'
UDT'?T'>T'>T'>T'=JT'>VE'

W 93M#$;'M.4#P,*$'+M$M'#1$'/3:$'4)$%6'C,%+$'.4'>XD'#.'0."0%+6$'#1,#'#1$'M0.:$'.4'*$;,::)"2'
1,*6P,*$'+")#'RI')"0%+6$M'."%3'#1$'$"6:.)"#'6$C)0$',#'YZ!'9$2;$"#'>T'[+M'>T'5$C)0$'=J',"6'
\+"0#)."'>E

Q 5$C)0$'90.:$'4.*'*$;,::)"2'1,*6P,*$'+")#'RL'0."#,)"M'."%3'."$'5$C)0$'90.:$'S"#*3T')6$"#)4)$6',M'
UIT'?T'>T'DT'>T'D=T'>VE'@%M.T'#1$'5OB5'M#*+0#+*$'4.*'*$;,::)"2'1,*6P,*$'+")#'RL')"6)0,#$M'#1$'
!FZ]^5S_YZ!_@]]'4%,2E'/1)M'1,*6P,*$'+")#';+M#'<$'#1$'%,M#')"'#1$'%)M#'.4'1,*6P,*$'+")#'6$4)")#)."'
M#*+0#+*$M'*$:.*#$6E'

W 93M#$;'M.4#P,*$'+M$M'#1$'!FZ]^5S_YZ!_@]]'4%,2'#.'0."0%+6$'#1,#',%%'YZ!'0.;:,#)<%$'6$C)0$M'
#1,#',*$'".#'$X:%)0)#%3'$"+;$*,#$6'+"6$*'.#1$*'*$;,::)"2'1,*6P,*$'+")#M',*$')"'#1$'M0.:$'.4'
*$;,::)"2'+")#'RLE'@%M.T'#1$'5$C)0$'90.:$'S"#*3'P)#1'/3:$'4)$%6'C,%+$'.4'>XI')M'+M$6'#.'
0."0%+6$'#1,#'#1$'!78X@Y!Z'`P)#1'!78'@Y!Z!5a>',"6'M.+*0$A)6'.4'U>TD=T>Vb')M'+"6$*'#1$'M0.:$'
.4'*$;,::)"2'1,*6P,*$'+")#'RLE

!"#$%&'()*+,''-./012&1"345'654170%8'90:7"#$%41"0:

!"#$%&&#"

'(&)%*+,-&

'#-).+

,"/01%

2345

!"#$%&&#"

!67+89:"%&&+2%;/$%&

254+

3%*<::/=1+

>=/)+?@

7=)%1"<)%0+

2%;/$%

2%;+ABCDCE

!67%+3##)+

!#")

2%;+A@FDCE

!67G+H!6G

H%1<$(+0%;/$%&

254+

3%*<::/=1+

>=/)+?I

!67%+3##)+

!#")

2%;+A@FD@E

254+

3%*<::/=1+

>=/)+?B

7=)%1"<)%0+

2%;/$%

2%;+AIJDCE

254+3%*<::/=1+

>=/)+?F

K#&)+,"/01%+A,-&+?CE

7LM94!76

Figure 1. VT-d remapping units located in the Memory Controller
Hub (MCH). Source: intel.com.

In particular, the hypervisor memory should never
be accessible to any DMA device. Otherwise the
attacker can perform a DMA attack, e.g. from a
driver domain, and subvert the hypervisor, see e.g.
[4].

1
1 Each of the remapping units can not only grant/deny accesses to certain physical memory, but also perform arbitrary translations of the DMA addresses.

It is important to stress that a typical system has
more than just one DMA remapping unit. In the ex-
ample in the figure above there are four independ-
ent remapping units in the system. Separate re-
mapping units could be used, for instance, for
graphics and audio cards, another for Intel Man-
agement Engine (which is used for AMT), and yet
another one for all the other PCI and PCI Express
devices, like network cards, SATA controllers, and
all the legacy PCI devices connected via the
Southbridge.

An important question we should answer, is how
the system software knows how many DMA re-
mapping units are present in the system, which
devices are connected to each unit, and where
their configuration registers are located?

The answer to the above questions is provided by
the so called DMAR ACPI table.

3. The DMAR ACPI table
The Intel VT-d specification [3] defines the so called
DMAR ACPI table, whose sole purpose is to pro-
vide detailed description about each DMA remap-
ping unit in the system. Those tables are being
constructed in RAM, and exposed to the system
software by the BIOS. Here, the assumption is that
the OEM, which provides the BIOS, knows exactly
the hardware used by the platform (in that case the
specifics of the Memory Controller Hub), as well as
where its configuration registers has been mapped
into system memory.

On Figure 2, a structure used to describe proper-
ties of one DMA Remapping Unit is presented. Two
fields are of special importance for us: the Register
Base Address field, that tells the system software
where the memory-mapped configuration registers
are located in the system physical memory address
space, and also the Device Scope[], which identi-
fies devices connected to this DMA Remapping
Unit. The devices are identified by specifying their
BDF addresses, or ranges of BDF addresses.

Figure 2. A DMA-remapping hardware unit definition (DRHD)
structure. DMAR ACPI table contains one such structure for
each DMA remapping unit in the system. Source: intel.com

4. Problem with the DMAR ACPI table
An alert reader should have already spotted a prob-
lem related to the use of DMAR ACPI table for re-
porting of VT-d hardware configuration: ACPI tables
are not digitally signed by the BIOS, nor they are
protected in any way. In fact it is easy for the at-
tacker to modify DMAR table by simply overwriting
system memory.2

Indeed, our first idea for the attack was to subvert
the DMAR ACPI table in such a way that the
SENTER instruction (as well as the rest of the sys-
tem software executed afterwards, e.g. tboot and
Xen) got a wrong picture of VT-d hardware. More
precisely, we wanted to cheat that there is only one
DMA remapping unit in the system, and we would
choose a unit which is “innocent” from our at-
tackerʼs perspective.

E.g. we observed that vPro systems have a sepa-
rate DMA remapping unit dedicated for the Man-
agement Engine (ME) only. Because our DMA at-
tack would not come from the ME, but rather from
some ordinary device like the network card or disk
controller, it would be useful to pretend to the sys-
tem that this ME-specific remapping unit is the only
one remapping unit in the system and that it covers
all the devices. In that case, we anticipated, the
SENTER instruction and later the MLE (e.g. tboot,
or Xen) would only initialize and setup this one re-
mapping unit, thinking this would protect against
DMA attacks from all the devices in the system.

!"#$%&'()*#+,%)-,#)."'/$01".%.23'4.*'5)*$0#$6'!78
9$:#$;<$*'=>>? @*01)#$0#+*$'9:$0)4)0,#)."'A'B$C'DE=
8*6$*'F+;<$*G'5HDIJKA>>L MJ

!"#$%&'()*+,-./*'()0"(/,12%3*-/4.1*5./*'(%6,78('1'9:%;'-%<*-,7/,+%"=#

!"# $%&'()*+,,-./'0+123+1)'4.-5'$)6-.-5-7.'8519:591)

@'5N@A*$;,::)"2'1,*6O,*$'+")#'6$4)")#)."'P5BQ5R'S#*+0#+*$'+")T+$%3'*$:*S"#S','*$;,::)"2'
1,*6O,*$'+")#':*$S$"#')"'#1$':%,#4.*;E'/1$*$';+S#'<$',#'%$,S#'."$')"S#,"0$'.4'#1)S'S#*+0#+*$'4.*'$,01'
UV!'S$2;$"#')"'#1$':%,#4.*;E

;-)<2
=>5)'
?)./5@

=>5)'
A66B)5

$)B:1-,5-7.

/3:$ = >
>'A'5N@'B$;,::)"2'Q,*6O,*$'W")#'5$4)")#)."'
P5BQ5R'S#*+0#+*$

X$"2#1 = = (,*)$S'PDM'Y'S)-$'.4'5$C)0$'90.:$'9#*+0#+*$R

Z%,2S D L

[)#'>G'!FVXW5\]UV!]@XX

^ !4'9$#_'#1)S'*$;,::)"2'1,*6O,*$'+")#'1,S'+"6$*'
)#S'S0.:$',%%'UV!'0.;:,#)<%$'6$C)0$S')"'#1$'
S:$0)4)$6'9$2;$"#_'$`0$:#'6$C)0$S'*$:.*#$6'
+"6$*'#1$'S0.:$'.4'.#1$*'*$;,::)"2'1,*6O,*$'
+")#S'4.*'#1$'S,;$'9$2;$"#E'!4','5BQ5'S#*+0#+*$'
O)#1'!FVXW5\]UV!]@XX'4%,2'9$#')S'*$:.*#$6'4.*','
9$2;$"#_')#';+S#'<$'$"+;$*,#$6'<3'[!89',4#$*'
,%%'.#1$*'5BQ5'S#*+0#+*$S'4.*'#1$'S,;$'
9$2;$"#DE'@'5BQ5'S#*+0#+*$'O)#1'
!FVXW5\]UV!]@XX'4%,2'9$#';,3'+S$'#1$'a5$C)0$'
90.:$b'4)$%6'#.'$"+;$*,#$'!78`@U!V',"6'QU\/'
6$C)0$S'+"6$*')#S'S0.:$E

^ !4'V%$,*_'#1)S'*$;,::)"2'1,*6O,*$'+")#'1,S'+"6$*'
)#S'S0.:$'."%3'6$C)0$S')"'#1$'S:$0)4)$6'9$2;$"#'
#1,#',*$'$`:%)0)#%3')6$"#)4)$6'#1*.+21'#1$'a5$C)0$'
90.:$b'4)$%6E

[)#S'DAKG'BS*C$6E

DE' 8"' :%,#4.*;S' O)#1' ;+%#):%$' UV!' S$2;$"#S_' ,"3' .4' #1$' S$2;$"#S' 0,"' 1,C$' ,' 5BQ5' S#*+0#+*$' O)#1
!FVXW5\]UV!]@XX'4%,2'9$#E

BS*C$6 D H B$S$*C$6'P>RE

9$2;$"#'F+;<$* = M /1$'UV!'9$2;$"#',SS.0),#$6'O)#1'#1)S'+")#E

B$2)S#$*'[,S$'@66*$SS ? ?
[,S$',66*$SS'.4'*$;,::)"2'1,*6O,*$'*$2)S#$*AS$#'4.*'
#1)S'+")#E

5$C)0$'90.:$'cd A DM

/1$'5$C)0$'90.:$'S#*+0#+*$'0."#,)"S'-$*.'.*';.*$'
5$C)0$'90.:$'\"#*)$S'#1,#')6$"#)43'6$C)0$S')"'#1$'
S:$0)4)$6'S$2;$"#',"6'+"6$*'#1$'S0.:$'.4'#1)S'
*$;,::)"2'1,*6O,*$'+")#E

/1$'5$C)0$'90.:$'S#*+0#+*$')S'6$S0*)<$6'<$%.OE

2

2 It is indeed very easy, because we assume a scenario where the attacker executes code before SENTER, which in practice means the attacker subverted e.g.
the bootloader. In that situation there is no OS that could apply any protections on the memory where BIOS stored the ACPI tables, including the DMAR table.

After all, they should have no way of knowing there
are other remapping units for other devices.

Interestingly, after implementing a simple DMAR
subverting exploit, it turned out that the SENTER
instruction didnʼt execute successfully. In fact, it
returned an error about the VT-d configuration re-
ported in the DMAR table3...

5. The mysterious SINIT module
A curious reader would already be asking a ques-
tion: so how the SENTER instruction knew that the
VT-d configuration reported in DMAR was a fake
one?

It turned out that this is one of the roles of the so
called SINIT Authenticated Code modules, that are
distributed by Intel for all TXT-capable chipsets.
Currently the modules are being made available as
part of the Intelʼs reference implementation of TXT-
based trusted boot project [5], but in the future the
specific modules might be bundled together with
the BIOS firmware.

The internals (exact algorithms and code) of SINIT
modules are not documented by Intel. All that is
officially known is that the SENTER instruction
loads4 and executes the SINIT module specific to
the chipset on which itʼs running, and that the code
the SINIT module contains is tasked with enforcing
appropriate platform configuration needed for se-
cure launch process.

It is important to notice that the SINIT modules are
digitally signed and that the code inside SINIT will
get executed by SENTER only if the signature is
intact.

We took a closer look at the SINIT module for our
platform (based on Q45 chipset), suspecting that it
has something to do with ability to detect fake VT-d
configuration. It turned out the module contains
regular x86 code, so it was easy for us to disas-
semble and further analyze it.

6. Inside the SINIT module
Because we knew the error codes that SENTER
was returning when we tried to cheat about DMAR
table, it was rather easy to locate the pieces of
code that likely were responsible for detecting the
VT-d misconfiguration.

In particular the following code, in the SINIT mod-
ule for Q45 chipsets, turned out to be responsible
for verifying device scopes and BAR registers in
the DMAR table:

mov edi, es:MCHBAR
mov esi, es:DMAR
add esi, size ACPI_TABLE_DMAR
check DRHD_0:
mov eax, [edi+0D40h]
and eax, 0FFFFFFFEh
mov edx, eax
pusha
mov eax, 0D800h ; PCI device 0:1b.0
call pci_read_word
cmp bx, 0FFFFh
popa
jz short check_DRHD1
cmp eax, [esi+DMAR_DRHD.BAR]
jnz BARs_mismatch
...
// perform other checks in this DRHD
...
check_DRHD_1:
mov eax, [edi+0D00h]
and eax, 0FFFFFFFEh
mov ecx, eax
pusha
mov eax, 1000h ; PCI device 0:2.0
call pci_read_word
cmp bx, 0FFFFh
popa
jz short check_DRHD_2
cmp eax, [esi+DMAR_DRHD.BAR]
jnz BARs_mismatch
...
check_DRHD_2:
mov eax, [edi+0D80h]
...
check_DRHD_3:
mov eax, [edi+0DC0h]
and eax, 0FFFFFFFEh
cmp eax, [esi+DMAR_DRHD.BAR]
jnz short BARs_mismatch
...

We see here that if certain PCI devices are present
(their configuration register at offset 0x0 doesnʼt
read as 0xffff), then it is assumed that certain
DMA remapping unit is present, and the corre-
sponding DRHD structure for this remapping unit

3

3 We have also tried more subtle attacks, that e.g. preserved the original number of DRHD structures, but only modified the BAR field or the Device Scope fields. In
any case SENTER was throwing various errors, about BAR mismatches or invalid device scopes.

4 It seems that the SINIT code is never loaded into DRAM, but rather only to the so called AC Execution Area, which seems to be located in the CPU cache.

should be verified. In the fragments above, one can
see e.g. that it is verified whether the Register Base
Address field (BAR) reported in DRHD structure
matches the one reported by the chipset in some
(undocumented) fields of the MCHBAR region5.

In the case of a Q45-based system we used for
testing the following PCI devices were checked in
order to establish if given DMA remapping unit is
present and if given DRHD structure in the ACPI
DMAR table should be verified:

DRHD PCI BDF
address Device Name

0 0:1b.0 Intel Integrated Audio

1 0:02.0 Intel Integrated Graphics

2 0:03.0 Intel AMT/ME

3 * All other devices

We see there are 4 DMA remapping units in this
system: one exclusive remapping unit for audio and
for graphics, yet another separate unit for Intel
AMT/ME device, and finally the last one for all the
other devices in the system.

7. The role of the ACPI DMAR table
One could ask why do we need an ACPI DMAR
table, if the SINIT module is so smart that it could
figure out all the VT-d hardware configuration by
just by querying the chipset?

Thatʼs true indeed that the SINIT code, and conse-
quently the SENTER instruction, does not need any
help from the DMAR table. However, all the rest of
the system software, in particular the MLE that is
about to be started by SENTER, is not expected to
know all the specifics of the platform, and conse-
quently itʼs convenient to present information about
VT-d hardware configuration in some unified,
chipset-independent way. And this is the role of the
DMAR ACPI table.

A careful reader would, however, point out that itʼs
insecure for MLE to relay on the ACPI tables. As
we pointed out earlier, the ACPI tables are neither
signed, nor protected by BIOS in any way against
tampering.

To protect against tampering with DMAR table and
misleading MLE into wrong usage of VT-d, the

SINIT module, after it verifies the integrity of DMAR
table, copies it onto the so called TXT heap, which
is a special region of memory that is protected
against tampering during and after secure launch.

Itʼs important, however, for the developers of the
system software to realize this security problem
and to consciously use the copy of DMAR ACPI
table from TXT heap, rather then from BIOS mem-
ory.

As an example, one of the developers of tboot, that
is an Intelʼs open source implementation of trusted
boot based on TXT, and that is part of the popular
Xen hypervisor, has patched this problem only at
the beginning of this year [6].

However, back to our attack, the situation looks
pretty secure today. We have a smart SINIT code
that can detect any potential tampering of DMAR
table introduced before SENTER execution, and
also we assume the system software is properly
written and uses a copy of DMAR table from the
TXT heap 6.

Is there a chance to still bypass TXT in that case?

8. The bug in the SINIT module
It turned out there is (obviously, otherwise, the
authors would not be boring our dear readers with
this little paper).

Letʼs have a look at the actual code used by the
SINIT module that is used to read the base of the
MCHBAR region (which, as we saw before, is ex-
tensively used for various checks of DMAR table):

pusha
mov eax, 0x48 ; MCHBAR address
call pci_get_long
and ebx, 0xfffffffe
mov DWORD PTR es:MCHBAR, ebx
cmp ebx, 0xfec04000
ja continue
mov al, 0x4
mov ah, 0xc
call sinit_error
continue:
or ebx, 0x1
call pci_write_long
popa
ret

4

5 These are the fields at offsets 0xd40, 0d00, 0xd80 and 0xdc0. Interestingly those fields are not documented in the public chipset specification.
6 Obviously, we have also verified that it was not possible to modify the mentioned above undocumented chipset registers in the MCHBAR at offsets 0xd40, etc.
Most likely thay have been locked down by the BIOS.

The problem with the code above will become clear
if we look at the chipset specification for MCHBAR
register definition:

It shows that the MCHBAR register is a 64-bit reg-
ister. However, the code accessing this register
used by the SINIT module, is treating MCHBAR as
if it was 32-bit long.

While this looks innocent, because on most sys-
tems the MCHBAR region is mapped below 4GB
address, it might be abused by the attacker.

The attacker can, indeed, modify the value of the
MCHBAR register before executing SENTER in-
struction. It can be done via a standard write to the
PCI configuration space of the chipset (BDF 0:0.0,
register offset 0x48).

9. The attack sketch
In particular, the attacker might overwrite the
MCHBAR register with the following value:

Y = (1 << 32) + X

where X is a 32-bit number. This way the SINIT
code will believe that the MCHBAR region is
mapped at the memory starting at the address X,
while the real MCHBAR region will be mapped by
the chipset at the address Y.

Now, letʼs assume the attacker managed to map
some memory at address X, located between
0xfec04000 and 0xffffffff (see the condition
check in the code above). In that case the attacker
can prepare a fake MCHBAR region at this lower
address.

The fake region will be almost identical to the origi-
nal MCHBAR region (we can just copy a block of
memory7 mapped at the address Y), with one ex-

DRAM Controller Registers (D0:F0)

92 Datasheet

5.1.13 MCHBAR—(G)MCH Memory Mapped Register Range Base

B/D/F/Type: 0/0/0/PCI
Address Offset: 48-4Fh
Default Value: 0000000000000000h
Access: R/W/L, RO
Size: 64 bits

This is the base address for the (G)MCH Memory Mapped Configuration space. There is
no physical memory within this 16 KB window that can be addressed. The 16 KB
reserved by this register does not alias to any PCI 2.3 compliant memory mapped
space. On reset, the (G)MCH MMIO Memory Mapped Configuration space is disabled
and must be enabled by writing a 1 to MCHBAREN [Device 0, offset48h, bit 0].

All the bits in this register are locked in Intel TXT mode (82Q45/82Q43 GMCH only).

Bit Access
Default

Value
RST/PWR Description

63:36 RO 0000000h Core Reserved

35:14 R/W/L 000000h Core

(G)MCH Memory Mapped Base Address (MCHBAR):

This field corresponds to bits 35:14 of the base address

(G)MCH Memory Mapped configuration space. BIOS will

program this register resulting in a base address for a

16 KB block of contiguous memory address space. This

register ensures that a naturally aligned 16 KB space is

allocated within the first 64GB of addressable memory

space. System Software uses this base address to program

the (G)MCH Memory Mapped register set.

13:1 RO 0000h Core Reserved

0 R/W/L 0b Core

MCHBAR Enable (MCHBAREN):

0 = MCHBAR is disabled and does not claim any memory

1 = MCHBAR memory mapped accesses are claimed and

decoded appropriately

ception, however. Namely, the value of the (un-
documented) register in the MCHBAR region, that
holds the value of Register Base Address (BAR) for
the last DMA remapping unit #3 that covers most of
the PCI devices in our system, will be modified to
point to the BAR field of either of the first three re-
mapping units, that are used to filter Audio, Graph-
ics, or ME devices respectively8.

Additionally, we need to change the corresponding
BAR field in the ACPI DMAR table. This way, the
SINIT code will not be able to realize that there is
something wrong with the BAR field for the last re-
mapping unit9.

As a result, both SENTER and the system software
(e.g. Xen) will be tricked into believing that the last
remapping unit has its configuration registers
mapped at some other memory location (in our
case where are the registers of the unit #0, #1, or
#2). Consequently, it wonʼt be possible for the
SENTER instruction, and later for system software,
to properly setup VT-d permissions for most of the
PCI devices in the system, as most of the devices
are being handled by this last remapping unit.

This will result in the SENTER completing success-
fully, and the MLE initializing successfully, but their
memory will not be VT-d protected10. Now, the at-
tacker can use a DMA attack, e.g. from an unprivi-
leged VM that has at least one PCI device as-
signed to it (PCI pass-through) via VT-d, and com-
promise the hypervisor, or other system software.

The attacker can even program one of the PCI de-
vices before executing SENTER instruction in order
to schedule a malicious DMA, so that it automati-
cally subverted the newly loaded hypervisor just a
moment after it gets loaded. In that case no further
access to a driver domain will be needed.

10. Some details
For the attack to work, the attacker must map some
usable memory above 0xfec04000 address (but
still below 4G).

We should observe that even if the target system
has 4GB, or more, of DRAM memory installed, still
no physical DRAM is mapped in the window be-

5

7 We copy 16kB of memory, starting at MCHBAR address.
8 In the case of our proof of concept attack described later, we chose to point to the BAR of the DRHD[0], although the DRHD[1], and DRHD[2] would be just as
good. Our DMA attack was using HDD controller, so neither of the first three DMA remapping units could be used to stop such an attack.

9 Perhaps the SINIT code could figure out that there are two different DMA remapping units in the system that use the same base addresses for mapping their
registers. But perhaps this is not something forbidden by the specification. Even if SINIT could detect such a situation as suspicious, we could point the BAR regis-
ter for the last remapping unit to some custom memory region.

10 Of course the values in the PCR registers 17 and 18 are not affected by the attack.

tween the address specified in the TOLUD register
and 4GB (see Figure 3 below).

Figure 3. Physical memory mapping above TOLUD on Q45-
based systems. Source: intel.com

However, there is a window of addresses between
0xfef00000 and 0xffe00000 that are mapped
to the ICH (southbridge). Having a memory
mapped in this range would satisfy the requirement
for our attack, as those addresses lay above
0xfec04000.

We have decided to use a network card device
(based on Intel integrated e1000e chipset, that is
part of the standard Intel ICH) in order to map
some memory. It turned out that by writing to cer-
tain configuration register of the network card
(MBARA), we could make a substantial amount of
memory (64kB) mapped at the desired address
range.

Datasheet 63

System Address Map

Figure 7. PCI Memory Address Range

DMI Interface

(subtractive decode)

FEF0_0000h

4 GB – 2 MB

FSB Interrupts

FEE0_0000h

PCI Express Configuration

Space

E000_0000h

High BIOS

FFE0_0000h

FFFF_FFFFh 4 GB

4 GB – 17 MB

DMI Interface

(subtractive decode)
FED0_0000h

4 GB – 18 MB

Local (CPU) APIC
FEC8_0000h

4 GB – 19 MB

I/O APIC

FEC0_0000h 4 GB – 20 MB

DMI Interface

(subtractive decode)

F000_0000h
4 GB – 256 MB

Possible

address range/

size (not

ensured)

4 GB – 512 MB

DMI Interface

(subtractive decode)

TOLUD

Optional HSEG
FEDA_0000h to
FEDB_FFFFh

BARs, Internal

Graphics

ranges, PCI

Express Port

could be here.

11. The Proof Of Concept
Below we present a pseudo-code for a working ex-
ploit we have written and tested on a Q45-based
system.

The code below should be executed before the se-
cure launch is started, e.g. as part of the MBR or
boot loader, e.g. GRUB.

#define ETH_MEM 0xfef00000
#define FAKE_MCHBAR (ETH_MEM+0x10000)
#define NEW_MCHBAR ((1ULL<<32) +
 FAKE_MCHBAR)

// map some memory above 0xfec00000...
pci_write_long (ETH_DEV, MBARA_REG,
ETH_MEM)

// copy original MCHBAR region there...
MCHBAR = pci_read_long (MCH_DEV,
MCHBAR_REG);
memcpy (FAKE_MCHBAR, MCHBAR&~1, 0x4000);

// do the trick!
DMAR = get_acpi_dmar_base();
DMAR.DRHD[3].BAR = DMAR.DRHD[0].BAR
*(FAKE_MCHBAR + 0xdc0) = DMAR.DRHD[3].BAR

// update MCHBAR...
pci_write_longlong (MCH_DEV, MCHBAR_REG,
NEW_MCHBAR | 0x1)

We have tested our exploit code on both a Q35-
based and a Q45-based systems. We used Xen
3.4.2 hypervisor, with the most recent release of
tboot [5], (tboot-20090330), together with the latest
SINIT modules, and also latest versions of Intel
BIOS11.

12. Affected products
Intel® TXT is a very new technology. The first desk-
top machines supporting TXT started appearing
only at the end of 2007, while laptops with TXT
support have not been available before 2009. Con-
sequently very few products use TXT. One example
is the open source Xen hypervisor [7], that uses the
earlier mentioned tboot for implementing TXT-
supported boot.

6

11 A word of caution for those brave users who would like to try TXT at home (even without exploiting anything). If you execute SENTER on a system which has a
too-old BIOS, that is not TXT-compatible, you risk... bricking your box (i.e. making it unbootable). This, in fact, happened to us a few times. We determined that this
happens when we reboot the machine without doing a proper SEXIT (e.g. Xen crashes as a result of us performing some attack, or perhaps because of the power
failure). In that case the Memory Controller Hub would assume that “secrets are still in memory” and would not let anybody talk to DRAM, even the BIOS, before a
special SCLEAN module is loaded and executed. Of course, a non-TXT-aware BIOS doesnʼt know it should execute some SCLEAN module. As a result BIOS
cannot access DRAM, which obviously doesnʼt allow to boot the platform. The only solution in this case seem to be desolder the SPI-flash from the motherboard,
and re-flash it with original image using an external flash programmer. Obviously, not the most entertaining activity one could wish for.

There is also at least one upcoming commercial
product, Citrixʼs XenClient, that is said to make ex-
tensive use of Intel VT-d and TXT technologies [8].

We should stress, however, that if the virtualization
system is well designed, a buggy TXT doesnʼt
automatically render the system useless and vul-
nerable. Rather, in normal circumstances, the at-
tacker would still need to bypass the system-
imposed protections first (e.g. exploit a potential
bug in the hypervisor). The difference that the TXT
makes, is that in the event of such an attack, if the
attacker tried to introduce any permanent changes
to the system, e.g. subvert the hypervisor or Dom0
binaries on disk, the TXT would be able to prevent
such a subverted system from booting the next
time.

However, there exist scenarios where TXT attack
can be fatal and no other bug in the system soft-
ware is required to undermine security of the plat-
form.

One such case is when the systemʼs goal is to con-
tain a potentially malicious user. As an example we
can consider a virtualization system, where one of
the virtual machines is treated as “corporate” VM,
while other VMs might be the userʼs private ma-
chines. The corporate IT department might want to
grant this “corporate” VM an access to corporate
internal network and servers (e.g. only the machine
that positively passes Remote Attestation, can log
into the corporate intranet), but at the same time
might want to forbid the user to connect any USB
device to the “corporate” VM, in order to ensure the
employee will not be able to make copies of the
companyʼs internal documents. This is, in fact, one
of the goals of the earlier mentioned Citrixʼs upcom-
ing XenClient product [9].

For the above scenario TXT is absolutely neces-
sary, and if the attacker can bypass TXT secure
launch, e.g. using the exploit presented in this pa-
per, the attacker can bypass such restrictions at
will. And this all using an extremely cheap software-
only attack12.

Another scenario where TXT circumvention might
be fatal is full disk encryption, especially in case of
laptops. Itʼs widely known that a full disk encryption
scheme that is not based on a trusted boot scheme
is subject to trivial attack where the attacker can

subvert e.g. the boot loader in order to capture the
user passphrase. Later the attacker can steal the
encrypted laptop and will know the passphrase
needed to decrypt it. Such attacks have been dem-
onstrated in practice, see e.g. Evil Maid Attack [10].

It is thus very important to provide some form of
trusted boot when full disk encryption is in use. In-
tel® TXT is a good candidate, as it doesnʼt require
maintaing a long chain of trust throughout the boot
process. However, an attack on TXT like the one
presented in this paper, can be used to circumvent
such a trusted boot protection of full disk encryption
program, consequently leading to a successful “Evil
Maid”-like attack, with potentially fatal conse-
quences.

13. Status of the SINIT vulnerability
We have informed Intel about our discovery of the
SINIT implementation error, together with descrip-
tion how it could be exploited by an attacker to cir-
cumvent TXT secure launch, on September 30,
2009. We then agreed to withhold the publication of
this paper until Intel fixes the problem and pub-
lishes updated SINIT modules and the appropriate
security advisory.

Intel has patched the SINIT bug and published up-
dated SINIT modules on December 21, 2009 [11].

14. Summary
In this paper we have presented another attack that
could be used to fully circumvent Intel Trusted Exe-
cution Technology, specifically its core mechanism
for secure late launch. This is the second attack on
Intel® TXT our team has disclosed this year, with
the previous attack presented in February [1].

Our research in this area demonstrates that
hardware-aided security is not a silver bullet and
that such hardware technologies can still be some-
times attacked using software-only attacks. The
mere fact that some mechanism is implemented in
the CPU or in the chipset, doesnʼt automatically
make it secure (see also our recent work on Intel
AMT rootkits [12]).

We (still) believe, however, that hardware tech-
nologies, such a Intel VT-d and Intel® TXT are cru-
cial in building secure systems.

7

12 Of course, the person that is in a physical possession of the machine, e.g. laptop, can theoretically, always gain full control over the software executing on this
machine. In particular, such an attacker can e.g. replace the processor with a malicious processor that would allow for certain backdoors (e.g. ring3 to ring0 escala-
tion), or can retrieve the secrets stored in the TPM using electron microscope, or can perform active attacks on the LPC bug in order to reset the PCR17 and
PCR18 registers without executing the SENTER instruction, or can replace the DRAM chips with ones that would record the contents of the memory onto external
device. Such physical attacks are however considered very expensive to perform, often much more expensive than the data that are supposed to be protected by
such systems.

It is unavoidable for such complex technologies
such Intel® TXT (and we also think Intel VT-d) to
contain bugs. But there is a lot that vendors, like
Intel, could do to improve security of their products.
For instance, it seems to be a rather unfortunate
decision to keep certain things closed source and
undocumented, e.g. the SINIT module internals.
Publishing the SINIT source code, together with
more complete information about the chipset, and
perhaps even then microcode used by the
SENTER instruction, would likely allow more peo-
ple (besides Intel employees) to better review the
security properties of those new technologies.

Acknowledgments
Authors would like to thank Joseph Cihula from
Intel for reviewing the paper.

References
[1]
 Rafal Wojtczuk and Joanna Rutkowska. Attacking

Intel® Trusted Execution Technology. Presented at
Black Hat DC 2009, Washington, DC, USA, Febru-
rary 2009.

[2]
 David Grawrock. Dynamics of a Trusted Platform:
A Building Block Approach. Intel Press, 2009-04-
15.

[3]
 Intel Corp. Intel® Virtualization Technology for
Directed I/O.
http://download.intel.com/technology/computing/vp
tech/Intel(r)_VT_for_Direct_IO.pdf,

[4]
 Rafal Wojtczuk, Joanna Rutkowska, and Alexan-
der Tereshkin. Xen 0wning Trilogy: code and
demos.
http://invisiblethingslab.com/resources/bh08/,
August, 2008.

[5]
 Intel Corp. Trusted Boot (tboot).
http://sourceforge.net/projects/tboot, 2007-2009.

[6]
 Joseph Cihula. [PATCH] txt: 3/6 - use TXT's DMA-
protected DMAR table to setup VT-d.
http://lists.xensource.com/archives/html/xense-dev
el/2009-01/msg00004.html,

[7]
 Citrix. Xen Hypervisor. http://xen.org/,
[8]
 Citrix and Intel Corp. Citrix & Intel Working To-

gether to Deliver Local Virtual Desktops.
http://community.citrix.com/download/attachments/
100303689/CitrixXenClient_SolutionBrief.pdf?vers
ion=1,

[9]
 Patrick Gelsinger and Ian Pratt. Citrix Synergy
2009 conference keynote.
http://www.citrix.com/tv/#videos/423,

[10]
 Alexande Tereshkin and Joanna Rutkowska. Evil
Maid goes after TrueCrypt!
http://theinvisiblethings.blogspot.com/2009/10/evil-
maid-goes-after-truecrypt.html, October, 2009.

[11]
 Intel Corp. SINIT misconfiguration allows for Privi-
lege Escalation.
http://security-center.intel.com/advisory.aspx?inteli
d=INTEL-SA-00021&languageid=en-fr, December
2009.

[12]
 Alexander Tereshkin and Rafal Wojtczuk. Intro-
ducing Ring -3 Rootkits. Presented at Black Hat
USA 2009, Las Vegas, NV, USA, July 2009.

8

