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Abstract
Earlier this year our team has presented an attack against Intel® TXT that  exploited a design 
problem with SMM mode being over privileged on PC platforms and able to interfere with the 
SENTER instruction. This time we present a different attack that allows an attacker to trick 
the SENTER instruction into misconfiguring the VT-d engine, so that it doesnʼt protect the 
newly loaded MLE. This attack exploits implementation flaws in a so called SINIT module.

keywords: Intel TXT, Intel VT-d, SINIT, SENTER, Trusted Boot, Attack, Circumvention

1. Introduction
For the basic introduction about Intel® TXT, the 
reader is referenced to our previous paper on this 
topic [1], or alternatively, for a much more complete 
and in-depth introduction, to the updated book by 
David Grawrock [2].

The attack presented below assumes the attacker 
can execute his or her code before the TXTʼs 
SENTER instruction is executed, e.g. by infecting 
the boot loader. The attacker code, as we will show 
below, can then misconfigure the chipset in such a 
way that the SENTER instruction would be unable 
to properly setup VT-d protections for the newly 
loaded MLE (e.g. hypervisor). As a result, the at-
tacker would be able to compromise the securely 
loaded hypervisor using a classic DMA attack.

The Intel® TXT technology has been designed ex-
actly to prevent scenarios like the above. In other 
words, Intel® TXT secure launch process assumes 
that the system might be compromised before the 
SENTER instruction is executed, and yet the 
SENTER instruction is expected to securely load 
and start the hypervisor. The attack described in 
this paper demonstrates this assumption doesnʼt 
hold in practice, because of  certain implementation 
errors.

2. Intel VT-d background information
For the attack described in this paper, it is impor-
tant to understand certain internals of how Intel VT-
d technology is implemented. The reader can find 

much more details about VT-d internals in the Intel 
official specification [3].

As illustrated on Figure 1, Intel VT-d logic is imple-
mented in the Memory Controller Hub  (MCH, also 
called the Northbridge). System software, such as  
the OS or the hypervisor, can configure each VT-d 
remapping unit so that all devices connected under 
the particular unit are allowed DMA access to only 
certain regions of the system physical memory1. 
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Figure 1. VT-d remapping units located in the Memory Controller 
Hub (MCH). Source: intel.com.

In particular, the hypervisor memory should never 
be accessible to any DMA device. Otherwise the 
attacker can perform a DMA attack, e.g. from a 
driver domain, and subvert the hypervisor, see e.g. 
[4].

1
1 Each of the remapping units can not only grant/deny accesses to certain physical memory, but also perform arbitrary translations of the DMA addresses.



It is important to stress that a typical system has 
more than just one DMA remapping unit. In the ex-
ample in the figure above there are four independ-
ent remapping units in the system. Separate re-
mapping units could be used, for instance, for 
graphics and audio cards, another for Intel Man-
agement Engine (which is used for AMT), and yet 
another one for all the other PCI and PCI Express 
devices, like network cards, SATA controllers, and 
all the legacy PCI devices connected via the 
Southbridge.

An important question we should answer, is how 
the system software knows how many DMA re-
mapping units are present in the system, which 
devices are connected to each unit, and where 
their configuration registers are located? 

The answer to the above questions is provided by 
the so called DMAR ACPI table.

3. The DMAR ACPI table
The Intel VT-d specification [3] defines the so called 
DMAR ACPI table, whose sole purpose is to pro-
vide detailed description about each DMA remap-
ping unit in the system. Those tables are being 
constructed in RAM, and exposed to the system 
software by the BIOS. Here, the assumption is that 
the OEM, which provides the BIOS, knows exactly 
the hardware used by the platform (in that case the 
specifics of the Memory Controller Hub), as well as 
where its configuration registers has been mapped 
into system memory.

On Figure 2, a structure used to describe proper-
ties of one DMA Remapping Unit is presented. Two 
fields are of special importance for us: the Register 
Base Address field, that tells the system software 
where the memory-mapped configuration registers 
are located in the system physical memory address 
space, and also the Device Scope[], which identi-
fies devices connected to this DMA Remapping 
Unit. The devices are identified by specifying their 
BDF addresses, or ranges of BDF addresses.

Figure 2. A DMA-remapping hardware unit definition (DRHD) 
structure. DMAR ACPI table contains one such structure for 
each DMA remapping unit in the system. Source: intel.com

4. Problem with the DMAR ACPI table
An alert reader should have already spotted a prob-
lem related to the use of DMAR ACPI table for re-
porting of VT-d hardware configuration: ACPI tables 
are not digitally signed by the BIOS, nor they are 
protected in any way. In fact it is easy for the at-
tacker to modify DMAR table by simply overwriting 
system memory.2

Indeed, our first idea for the attack was to subvert 
the DMAR ACPI table in such a way that the 
SENTER instruction (as well as the rest of the sys-
tem software executed afterwards, e.g. tboot and 
Xen) got a wrong picture of VT-d hardware. More 
precisely, we wanted to cheat that there is only one 
DMA remapping unit in the system, and we would 
choose a unit which is “innocent” from our at-
tackerʼs perspective.

E.g. we observed that vPro systems have a sepa-
rate DMA remapping unit dedicated for the Man-
agement Engine (ME) only. Because our DMA at-
tack would not come from the ME, but rather from 
some ordinary device like the network card or disk 
controller, it would be useful to pretend to the sys-
tem that this ME-specific remapping unit is the only 
one remapping unit in the system and that it covers 
all the devices. In that case, we anticipated, the 
SENTER instruction and later the MLE (e.g. tboot, 
or Xen) would only initialize and setup  this one re-
mapping unit, thinking this would protect against 
DMA attacks from all the devices in the system. 
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2

2 It is indeed very easy, because we assume a scenario where the attacker executes code before SENTER, which in practice means the attacker subverted e.g. 
the bootloader. In that situation there is no OS that could apply any protections on the memory where BIOS stored the ACPI tables, including the DMAR table.



After all, they should have no way of knowing there 
are other remapping units for other devices.

Interestingly, after implementing a simple DMAR 
subverting exploit, it turned out that the SENTER 
instruction didnʼt execute successfully. In fact, it 
returned an error about the VT-d configuration re-
ported in the DMAR table3...

5. The mysterious SINIT module
A curious reader would already be asking a ques-
tion: so how the SENTER instruction knew that the 
VT-d configuration reported in DMAR was a fake 
one?

It turned out that this is one of the roles of the so 
called SINIT Authenticated Code modules, that are 
distributed by Intel for all TXT-capable chipsets. 
Currently the modules are being made available as 
part of the Intelʼs reference implementation of TXT-
based trusted boot project   [5], but in the future the 
specific modules might be bundled together with 
the BIOS firmware.

The internals (exact algorithms and code) of SINIT 
modules are not documented by Intel. All that is 
officially known is that the SENTER instruction 
loads4  and executes the SINIT module specific to 
the chipset on which itʼs running, and that the code 
the SINIT module contains is tasked with enforcing 
appropriate platform configuration needed for se-
cure launch process.

It is important to notice that the SINIT modules are 
digitally signed and that the code inside SINIT will 
get executed by SENTER only if the signature is 
intact.

We took a closer look at the SINIT module for our 
platform (based on Q45 chipset), suspecting that it 
has something to do with ability to detect fake VT-d 
configuration. It turned out the module contains 
regular x86 code, so it was easy for us to disas-
semble and further analyze it.

6. Inside the SINIT module
Because we knew the error codes that SENTER 
was returning when we tried to cheat about DMAR 
table, it was rather easy to locate the pieces of 
code that likely were responsible for detecting the 
VT-d misconfiguration.

In particular the following code, in the SINIT mod-
ule for Q45 chipsets, turned out to be responsible 
for verifying device scopes and BAR registers in 
the DMAR table:

mov     edi, es:MCHBAR
mov     esi, es:DMAR
add     esi, size ACPI_TABLE_DMAR
check DRHD_0:
mov     eax, [edi+0D40h]
and     eax, 0FFFFFFFEh
mov     edx, eax
pusha
mov     eax, 0D800h ; PCI device 0:1b.0
call    pci_read_word
cmp     bx, 0FFFFh
popa
jz      short check_DRHD1
cmp     eax, [esi+DMAR_DRHD.BAR]
jnz     BARs_mismatch
...
// perform other checks in this DRHD
...
check_DRHD_1:
mov     eax, [edi+0D00h]
and     eax, 0FFFFFFFEh
mov     ecx, eax
pusha
mov     eax, 1000h ; PCI device 0:2.0
call    pci_read_word
cmp     bx, 0FFFFh
popa
jz      short check_DRHD_2
cmp     eax, [esi+DMAR_DRHD.BAR]
jnz     BARs_mismatch
...
check_DRHD_2:
mov     eax, [edi+0D80h]
...
check_DRHD_3:
mov     eax, [edi+0DC0h]
and     eax, 0FFFFFFFEh
cmp     eax, [esi+DMAR_DRHD.BAR]
jnz     short BARs_mismatch
...

We see here that if certain PCI devices are present 
(their configuration register at offset 0x0 doesnʼt 
read as 0xffff), then it is assumed that certain 
DMA remapping unit is present, and the corre-
sponding DRHD structure for this remapping unit 

3

3 We have also tried more subtle attacks, that e.g. preserved the original number of DRHD structures, but only modified the BAR field or the Device Scope fields. In 
any case SENTER was throwing various errors, about BAR mismatches or invalid device scopes.

4 It seems that the SINIT code is never loaded into DRAM, but rather only to the so called AC Execution Area, which seems to be located in the CPU cache.



should be verified. In the fragments above, one can 
see e.g. that it is verified whether the Register Base 
Address field (BAR) reported in DRHD structure 
matches the one reported by the chipset in some 
(undocumented) fields of the MCHBAR region5.

In the case of a Q45-based system we used for 
testing the following PCI devices were checked in 
order to establish if given DMA remapping unit is 
present and if given DRHD structure in the ACPI 
DMAR table should be verified:

DRHD PCI BDF 
address Device Name

0 0:1b.0 Intel Integrated Audio

1 0:02.0 Intel Integrated Graphics

2 0:03.0 Intel AMT/ME

3 * All other devices

We see there are 4 DMA remapping units in this 
system: one exclusive remapping unit for audio and 
for graphics, yet another separate unit for Intel 
AMT/ME device, and finally the last one for all the 
other devices in the system.

7. The role of the ACPI DMAR table
One could ask why do we need an ACPI DMAR 
table, if the SINIT module is so smart that it could 
figure out all the VT-d hardware configuration by 
just by querying the chipset?

Thatʼs true indeed that the SINIT code, and conse-
quently the SENTER instruction, does not need any 
help from the DMAR table. However, all the rest of 
the system software, in particular the MLE that is 
about to be started by SENTER, is not expected to 
know all the specifics of the platform, and conse-
quently itʼs convenient to present information about 
VT-d hardware configuration in some unified, 
chipset-independent way. And this is the role of the 
DMAR ACPI table.

A careful reader would, however, point out that itʼs 
insecure for MLE to relay on the ACPI tables. As 
we pointed out earlier, the ACPI tables are neither 
signed, nor protected by BIOS in any way against 
tampering.

To protect against tampering with DMAR table and 
misleading MLE into wrong usage of VT-d, the 

SINIT module, after it verifies the integrity of DMAR 
table, copies it onto the so called TXT heap, which 
is a special region of memory that is protected 
against tampering during and after secure launch.

Itʼs important, however, for the developers of the 
system software to realize this security problem 
and to consciously use the copy of DMAR ACPI 
table from TXT heap, rather then from BIOS mem-
ory.

As an example, one of the developers of tboot, that 
is an Intelʼs open source implementation of trusted 
boot based on TXT, and that is part of the popular 
Xen hypervisor, has patched this problem only at 
the beginning of this year  [6].

However, back to our attack, the situation looks 
pretty secure today. We have a smart SINIT code 
that can detect any potential tampering of DMAR 
table introduced before SENTER execution, and 
also we assume the  system software is properly 
written and uses a copy of DMAR table from the 
TXT heap 6.

Is there a chance to still bypass TXT in that case?

8. The bug in the SINIT module
It turned out there is (obviously, otherwise, the 
authors would not be boring our dear readers with 
this little paper).

Letʼs have a look at the actual code used by the 
SINIT module that is used to read the base of the 
MCHBAR region (which, as we saw before, is ex-
tensively used for various checks of DMAR table):

pusha  
mov    eax, 0x48 ; MCHBAR address
call   pci_get_long
and    ebx, 0xfffffffe
mov    DWORD PTR es:MCHBAR, ebx
cmp    ebx, 0xfec04000
ja     continue
mov    al, 0x4
mov    ah, 0xc
call   sinit_error
continue:
or     ebx, 0x1
call   pci_write_long
popa   
ret  

4

5 These are the fields at offsets 0xd40, 0d00, 0xd80 and 0xdc0. Interestingly those fields are not documented in the public chipset specification.
6 Obviously, we have also verified that it was not possible to modify the mentioned above undocumented chipset registers in the MCHBAR at offsets 0xd40, etc. 
Most likely thay have been locked down by the BIOS.



The problem with the code above will become clear 
if we look at the chipset specification for MCHBAR 
register definition:

It shows that the MCHBAR register is a 64-bit reg-
ister. However, the code accessing this register 
used by the SINIT module, is treating MCHBAR as 
if it was 32-bit long.

While this looks innocent, because on most sys-
tems the MCHBAR region is mapped below 4GB 
address, it might be abused by the attacker.

The attacker can, indeed, modify the value of the 
MCHBAR register before executing SENTER in-
struction. It can be done via a standard write to the 
PCI configuration space of the chipset (BDF 0:0.0, 
register offset 0x48).

9. The attack sketch
In particular, the attacker might overwrite the 
MCHBAR register with the following value:

Y = (1 << 32) + X

where X is a 32-bit number. This way the SINIT 
code will believe that the MCHBAR region is 
mapped at the memory starting at the address X, 
while the real MCHBAR region will be mapped by 
the chipset at the address Y.

Now, letʼs assume the attacker managed to map 
some memory at address X, located between 
0xfec04000 and 0xffffffff (see the condition 
check in the code above). In that case the attacker 
can prepare a fake MCHBAR region at this lower 
address. 

The fake region will be almost identical to the origi-
nal MCHBAR region (we can just copy a block of 
memory7  mapped at the address Y), with one ex-

DRAM Controller Registers (D0:F0)

92 Datasheet

5.1.13 MCHBAR—(G)MCH Memory Mapped Register Range Base

B/D/F/Type: 0/0/0/PCI
Address Offset: 48-4Fh
Default Value: 0000000000000000h
Access:  R/W/L, RO
Size: 64 bits

This is the base address for the (G)MCH Memory Mapped Configuration space. There is 
no physical memory within this 16 KB window that can be addressed. The 16 KB 
reserved by this register does not alias to any PCI 2.3 compliant memory mapped 
space. On reset, the (G)MCH MMIO Memory Mapped Configuration space is disabled 
and must be enabled by writing a 1 to MCHBAREN [Device 0, offset48h, bit 0].

All the bits in this register are locked in Intel TXT mode (82Q45/82Q43 GMCH only).

Bit Access
Default 

Value
RST/PWR Description

63:36 RO 0000000h Core Reserved

35:14 R/W/L 000000h Core

(G)MCH Memory Mapped Base Address (MCHBAR): 

This field corresponds to bits 35:14 of the base address 

(G)MCH Memory Mapped configuration space. BIOS will 

program this register resulting in a base address for a 

16 KB block of contiguous memory address space. This 

register ensures that a naturally aligned 16 KB space is 

allocated within the first 64GB of addressable memory 

space. System Software uses this base address to program 

the (G)MCH Memory Mapped register set.

13:1 RO 0000h Core Reserved

0 R/W/L 0b Core

MCHBAR Enable (MCHBAREN):

0 = MCHBAR is disabled and does not claim any memory

1 = MCHBAR memory mapped accesses are claimed and 

decoded appropriately

ception, however. Namely, the value of the (un-
documented) register in the MCHBAR region, that 
holds the value of Register Base Address (BAR) for 
the last DMA remapping unit #3 that covers most of 
the PCI devices in our system, will be modified to 
point to the BAR field of either of the first three re-
mapping units, that are used to filter Audio, Graph-
ics, or ME devices respectively8.

Additionally, we need to change the corresponding 
BAR field in the ACPI DMAR table. This way, the 
SINIT code will not be able to realize that there is 
something wrong with the BAR field for the last re-
mapping unit9.

As a result, both SENTER and the system software 
(e.g. Xen) will be tricked into believing that the last 
remapping unit has its configuration registers 
mapped at some other memory location (in our 
case where are the registers of the unit #0, #1, or 
#2). Consequently, it wonʼt be possible for the 
SENTER instruction, and later for system software, 
to properly setup  VT-d permissions for most of the 
PCI devices in the system, as most of the devices 
are being handled by this last remapping unit.

This will result in the SENTER completing success-
fully, and the MLE initializing successfully, but their 
memory will not be VT-d protected10. Now, the at-
tacker can use a DMA attack, e.g. from an unprivi-
leged VM that has at least one PCI device as-
signed to it (PCI pass-through) via VT-d, and com-
promise the hypervisor, or other system software.

The attacker can even program one of the PCI de-
vices before  executing SENTER instruction in order 
to schedule a malicious DMA, so that it automati-
cally subverted the newly loaded hypervisor just a 
moment after it gets loaded. In that case no further 
access to a driver domain will be needed.

10. Some details
For the attack to work, the attacker must map  some 
usable memory above 0xfec04000  address (but 
still below 4G). 

We should observe that even if the target system 
has 4GB, or more, of DRAM memory installed, still 
no physical DRAM is mapped in the window be-

5

7 We copy 16kB of memory, starting at MCHBAR address.
8 In the case of our proof of concept attack described later, we chose to point to the BAR of the DRHD[0], although the DRHD[1], and DRHD[2] would be just as 
good. Our DMA attack was using HDD controller, so neither of the first three DMA remapping units could be used to stop such an attack.

9 Perhaps the SINIT code could figure out that there are two different DMA remapping units in the system that use the same base addresses for mapping their 
registers. But perhaps this is not something forbidden by the specification. Even if SINIT could detect such a situation as suspicious, we could point the BAR regis-
ter for the last remapping unit to some custom memory region.

10 Of course the values in the PCR registers 17 and 18 are not affected by the attack.



tween the address specified in the TOLUD register 
and 4GB (see Figure 3 below).

Figure 3. Physical memory mapping above TOLUD on Q45-
based systems. Source: intel.com

However, there is a window of addresses between 
0xfef00000 and 0xffe00000 that are mapped 
to the ICH (southbridge). Having a memory 
mapped in this range would satisfy the requirement 
for our attack, as those addresses lay above 
0xfec04000.

We have decided to use a network card device 
(based on Intel integrated e1000e chipset, that is 
part of the standard Intel ICH) in order to map 
some memory. It turned out that by writing to cer-
tain configuration register of the network card 
(MBARA), we could make a substantial amount of 
memory (64kB) mapped at the desired address 
range.
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could be here.

11. The Proof Of Concept
Below we present a pseudo-code for a working ex-
ploit we have written and tested on a Q45-based 
system.

The code below should be executed before the se-
cure launch is started, e.g. as part of the MBR or 
boot loader, e.g. GRUB.

#define ETH_MEM 0xfef00000
#define FAKE_MCHBAR (ETH_MEM+0x10000)
#define NEW_MCHBAR ((1ULL<<32) +  
   FAKE_MCHBAR)

// map some memory above 0xfec00000...
pci_write_long (ETH_DEV, MBARA_REG, 
ETH_MEM)

// copy original MCHBAR region there...
MCHBAR = pci_read_long (MCH_DEV, 
MCHBAR_REG);
memcpy (FAKE_MCHBAR, MCHBAR&~1, 0x4000);

// do the trick!
DMAR = get_acpi_dmar_base();
DMAR.DRHD[3].BAR = DMAR.DRHD[0].BAR
*(FAKE_MCHBAR + 0xdc0) = DMAR.DRHD[3].BAR

// update MCHBAR...
pci_write_longlong (MCH_DEV, MCHBAR_REG, 
NEW_MCHBAR | 0x1)

We have tested our exploit code on both  a Q35-
based and a Q45-based systems. We used Xen  
3.4.2 hypervisor, with the most recent release of 
tboot [5], (tboot-20090330), together with the latest 
SINIT modules, and also latest versions of Intel 
BIOS11.

12. Affected products
Intel® TXT is a very new technology. The first desk-
top machines supporting TXT started appearing 
only at the end of 2007, while laptops with TXT 
support have not been available before 2009. Con-
sequently very few products use TXT. One example 
is the open source Xen hypervisor [7], that uses the 
earlier mentioned tboot for implementing TXT-
supported boot.

6

11 A word of caution for those brave users who would like to try TXT at home (even without exploiting anything). If you execute SENTER on a system which has a 
too-old BIOS, that is not TXT-compatible, you risk... bricking your box (i.e. making it unbootable). This, in fact, happened to us a few times. We determined that this 
happens when we reboot the machine without doing a proper SEXIT (e.g. Xen crashes as a result of us performing some attack, or perhaps because of the power 
failure). In that case the Memory Controller Hub would assume that “secrets are still in memory” and would not let anybody talk to DRAM, even the BIOS, before a 
special SCLEAN module is loaded and executed. Of course, a non-TXT-aware BIOS doesnʼt know it should execute some SCLEAN module. As a result BIOS 
cannot access DRAM, which obviously doesnʼt allow to boot the platform. The only solution in this case seem to be desolder the SPI-flash from the motherboard, 
and re-flash it with original image using an external flash programmer. Obviously, not the most entertaining activity one could wish for.



There is also at least one upcoming commercial 
product, Citrixʼs XenClient, that is said to make ex-
tensive use of Intel VT-d and TXT technologies [8].

We should stress, however, that if the virtualization 
system is well designed, a buggy TXT doesnʼt 
automatically render the system useless and vul-
nerable. Rather, in normal circumstances, the at-
tacker would still need to bypass the system-
imposed protections first (e.g. exploit a potential 
bug in the hypervisor). The difference that the TXT 
makes, is that in the event of such an attack, if the 
attacker tried to introduce any permanent changes 
to the system, e.g. subvert the hypervisor or Dom0 
binaries on disk, the TXT would be able to prevent 
such a subverted system from booting the next 
time.

However, there exist scenarios where TXT attack 
can be fatal and no other bug in the system soft-
ware is required to undermine security of the plat-
form.

One such case is when the systemʼs goal is to con-
tain a potentially malicious user. As an example we 
can consider a virtualization system, where one of 
the virtual machines is treated as “corporate” VM, 
while other VMs might be the userʼs private ma-
chines. The corporate IT department might want to 
grant this “corporate”  VM an access to corporate 
internal network and servers (e.g. only the machine 
that positively passes Remote Attestation, can log 
into the corporate intranet), but at the same time 
might want to forbid the user to connect any USB 
device to the “corporate” VM, in order to ensure the 
employee will not be able to make copies of the 
companyʼs internal documents. This is, in fact, one 
of the goals of the earlier mentioned Citrixʼs upcom-
ing XenClient product [9].

For the above scenario TXT is absolutely neces-
sary, and if the attacker can bypass TXT secure 
launch, e.g. using the exploit presented in this pa-
per, the attacker can bypass such restrictions at 
will. And this all using an extremely cheap software-
only attack12.

Another scenario where TXT circumvention might 
be fatal is full disk encryption, especially in case of 
laptops. Itʼs widely known that a full disk encryption 
scheme that is not based on a trusted boot scheme 
is subject to trivial attack where the attacker can 

subvert e.g. the boot loader in order to capture the 
user passphrase. Later the attacker can steal the 
encrypted laptop  and will know the passphrase 
needed to decrypt it. Such attacks have been dem-
onstrated in practice, see e.g. Evil Maid Attack [10].

It is thus very important to provide some form of 
trusted boot when full disk encryption is in use. In-
tel® TXT is a good candidate, as it doesnʼt require 
maintaing a long chain of trust throughout the boot 
process. However, an attack on TXT like the one 
presented in this paper, can be used to circumvent 
such a trusted boot protection of full disk encryption 
program, consequently leading to a successful “Evil 
Maid”-like attack, with potentially fatal conse-
quences.

13. Status of the SINIT vulnerability
We have informed Intel about our discovery of the 
SINIT implementation error, together with descrip-
tion how it could be exploited by an attacker to cir-
cumvent TXT secure launch, on September 30, 
2009. We then agreed to withhold the publication of 
this paper until Intel fixes the problem and pub-
lishes updated SINIT modules and the appropriate 
security advisory.

Intel has patched the SINIT bug and published up-
dated SINIT modules on December 21, 2009 [11].

14. Summary
In this paper we have presented another attack that 
could be used to fully circumvent Intel Trusted Exe-
cution Technology, specifically its core mechanism 
for secure late launch. This is the second attack on 
Intel® TXT our team has disclosed this year, with 
the previous attack presented in February [1].

Our research in this area demonstrates that 
hardware-aided security is not a silver bullet and 
that such hardware technologies can still be some-
times attacked using software-only attacks. The 
mere fact that some mechanism is implemented in 
the CPU or in the chipset, doesnʼt automatically 
make it secure (see also our recent work on Intel 
AMT rootkits [12]).

We (still) believe, however, that hardware tech-
nologies, such a Intel VT-d and Intel® TXT are cru-
cial in building secure systems.

7

12 Of course, the person that is in a physical possession of the machine, e.g. laptop, can theoretically, always gain full control over the software executing on this 
machine. In particular, such an attacker can e.g. replace the processor with a malicious processor that would allow for certain backdoors (e.g. ring3 to ring0 escala-
tion), or can retrieve the secrets stored in the TPM using electron microscope, or can perform active attacks on the LPC bug in order to reset the PCR17 and 
PCR18 registers without executing the SENTER instruction, or can replace the DRAM chips with ones that would record the contents of the memory onto external 
device. Such physical attacks are however considered very expensive to perform, often much more expensive than the data that are supposed to be protected by 
such systems.



It is unavoidable for such complex technologies 
such Intel® TXT (and we also think Intel VT-d) to 
contain bugs. But there is a lot that vendors, like 
Intel, could do to improve security of their products. 
For instance, it seems to be a rather unfortunate 
decision to keep  certain things closed source and 
undocumented, e.g. the SINIT module internals. 
Publishing the SINIT source code, together with 
more complete information about the chipset, and 
perhaps even then microcode used by the 
SENTER instruction, would likely allow more peo-
ple (besides Intel employees) to better review the 
security properties of those new technologies.
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