
Attacking Intel® Trusted Execution
Technology

Rafal Wojtczuk and Joanna Rutkowska

http://invisiblethingslab.com/

Black Hat DC, February 18-19, 2009
Washington, DC, USA

Trusted Execution Technology (TXT)

Attacking TXT

More on the Implementation Bugs

More on the TXT design problem

1

2

3

4

Intel® Trusted Execution
Technology (TXT)

Trusted Computing

TPM 1.2
 Passive I/O device (master-slave)
 Special Registers: PCR[0...23]
 Interesting Operations:

 Seal/Unseal,
 Quote (Remote Attestation)
 some crypto services, e.g. PRNG, RSA

PCR registers

PCR “extend” operation

PCRN+1 = SHA-1 (PCRN + Value)

 A single PCR can be extended multiple times
 It is computationally infeasible to set PCR to a specified value
 (ext(A), ext(B)) ≠ (ext(B), ext(A))

TPM

PCR 17

PCR 18

PCR 19

0x12345678abcdef01

0x22443dd937495955

0xaaa9244ff3445574

TPM: Seal/Unseal Operation

secret (key)

secret (key)

sealing

unsealing

echo 'Secret!!!' | tpm_sealdata -z -i/proc/self/fd/0
-o./mysecret.blob -p17 -p18 -p19

// assuming PCR’s are the same
tpm_unsealdata ./mysecret.blob
Secret!!!

// assuming PCR’s are different
tpm_unsealdata ./mysecret.blob
error 24: Tspi_Data_Unseal: 0x00000018 - layer=tpm,
code=0018 (24), Wrong PCR value

TPM seal/unseal example

TPM: Quote Operation (Remote Attestation)

TPM

PCR 17

PCR 18

PCR 19

0x12345678abcdef01

0x22443dd937495955

0xaaa9244ff3445574

[PCR17,18,19] +
signature (AIK)

Both seal/unseal and quote operations can use any subset
of PCR registers (e.g. PCR17, 18, 19)

Static Root of Trust Measurement (SRTM)

BIOS ROM BIOS FLASH BOOT LOADER OS kernel

TPM

PCI
ROMs

PC
R

0

PC
R

1

PC
R

2

PC
R

3

PC
R

4 ...

PCR Usage (convention)

0 BIOS ROM & FLASH

1 Chipset config

2 PCI ROMs

3 PCI config

4 bootloader

5 bootloader config

6 ...

7 ...

8 e.g. OS kernel

SRTM in practice

Example #1: Disk Encryption

Disk encrypted with a key k, that is sealed into the TPM...
Now, only if the correct software (VMM, OS) gets started it will
get access to the key k and would be able to decrypt the disk!
MS’s Bitlocker works this way.

But the key k must be present in the memory all the time...
(the OS needs it to do disk on-the-fly decryption)

So, a malware can sniff it…

Two ways to solve it...

Example #2: User’s Picture Test :)

During installation, a user takes a picture of themselves using a
built-in in laptop camera...
This picture is stored on disk, encrypted with key kpic, which is
sealed by the TPM…
Now, on each reboot — only if the correct software got
loaded, it will be able to retrieve the key kpic and present a
correct picture to the user.
Important: after the use accepts the picture, the software should
extend PCR’s with some value (e.g. 0x0), to lock access to the
key kpic

Example #3: Remote Attestation

Each computer needs to “authenticate” itself to the monitoring
station using the TPM Quote command…
If a computer is discovered in a corporate network that hasn’t
authenticated using TPM Quote with expected PCR registers, an
alarm should be raised (e.g. this computer should be disconnected from the corporate network).
Convenient for corporate scenarios with centralized monitoring
server.

Problems with SRTM

COMPLETENESS — we need to measure every possible piece
of code that might have been executed since the system boot!

SCALABILITY of the above!

Dynamic Root of Trust Measurement (DRTM)

Attempt to address the SRTM’s weaknesses —
lack of scalability and the need for completeness...

VMM VMM
SENTER

A VMM we want to load
(Currently unprotected)

The VMM loaded and its
hash stored in PCR18

TPM

PC
R

18 TPM will unseal
secrets to the just-

loaded VMM only if it
is The Trusted VMMsecret key

Notes:
 Diagram is not in scale!
 SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

SENTER — one of a few new instructions introduced by TXT
(They are all called SMX extensions)

TXT bottom line

TXT late launch can transfer from unknown/untrusted/
unmeasured system…
to a known/trusted/measured system
Without reboot!

The system state ("trustedness") can be verified (possibly
remotely) because all important components (hypervisor,
kernel) hashes get stored into the TPM by SENTER.

TXT implementation: tboot

GRUB (1st stage)

GRUB (2nd stage)

tboot (“1st stage”)

Disk

xen.gz

SENTER resets PCR18 and
extends it with a hash of

tboot’s MLE

tboot MLE

Notes:
 Diagram is not in scale!
 SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

Xen + tboot example

First we start “trusted” Xen (built by root@)
...and seal some secret to PCR17/18/19

Now we boot “untrusted” Xen (compiled by hacker@)...

Thanks to tboot only when the trusted xen.gz was booted we can
get the secret unsealed from the TPM!

Now some live demos...

Tboot Demo #1: sealing to a trusted Xen

Tboot Demo #2: booting an untrusted Xen

SENTER is not obligatory!!!
TXT and TPM: cannot enforce anything on our hardware! We can always choose not to execute SENTER!

So what is this all for?

Why would a user or an attacker be
interested in executing the SENTER after all?

It’s all about TPM PCRs and secrets sealed in TPM! — see previous
SRTM examples — it’s all the same with DRTM

(alternatively: about Remote Attestation)

AMD Presidio

AMD’s technology similar to Intel’s TXT, part of AMD-V
A special new instruction SKINIT (Similar to Intel’s SENTER)

We haven’t looked at Presidio thoroughly yet.

Launch time protection vs. runtime protection

VM1 VM2 VM3
Management

Domain

hypervisor

MBR/
BIOS

SRTM/DRTM
(launch-time protection)

e.g. buffer overflow
(no runtime protection!)

Theoretically runtime-protection should be implemented
effectively using the VT-x/ VT-d technologies...

In practice: see our “Xen Owning Trilogy”
(BH USA 2008) ;)

TXT: exciting new technology with great potential!
(Eg. whenever a user boots their machine he or she knows it is secure!)

Attacking TXT

Q: What is more privileged than a kernel code?
A: Hypervisor (“Ring -1”)

Q: What is more privileged than a hypervisor?
A: System Management Mode (SMM)

Introducing “Ring -2”

SMM can access the whole system memory (including the
kernel and hypervisor memory!!!)

SMM Interrupt, SMI, can preempt the hypervisor (at least
on Intel VT-x)

SMM can access the I/O devices (IN/OUT, MMIO)

Q: Is this SMM some new thing?
A: Nope, it’s there since 80386...

SMM vs. TXT?

SMM gets loaded before Late Launch...

Q: Does TXT measure currently used SMM?
A: No, TXT doesn’t measure currently loaded SMM

Q: Does TXT reload SMM on SENTER execution?
A: No, SENTER doesn’t reload SMM…

(SENTER does not touch currently running SMM at all!)

Q:So, how does the SENTER deal with a malicious SMM?
A:Well… it currently does not!

Oh...

TXT attack sketch (using tboot+Xen as example)

GRUB (1st stage)

GRUB (2nd stage)

tboot.gz

Disk

xen.gz

Attacker patches the
bootloader (e.g. GRUB). The

patched code injects a
shellcode to SMM

SMRAM

Evil shellcode will infect the
Xen hypervisor later...

After xen.gz gets sucesfully
loaded, the evil code from

SMRAM can easily infect it...

Notes:
 Diagram is not in scale!
 SENTER also resets and extends PCR17 with hash of SINIT/BIOSACM/(STM)/ LCP

Let’s have a look at the actual SMM shellcode

Address of an unused entry in
the hypercall_table

Address of the shellcode (in
the guest address space)

... and the shorter version...

The final outcome...

Wait! But how to infect the SMM handler?

Stay tuned!
SMM exploiting to be presented in the next chapter...

Let’s take a look at the live demo now...

More on the Implementation Bugs

So how we can get into SMM memory (SMRAM)?

SMM research quick history

2006: Loic Duflot
(not an attack against SMM, SMM unprotected < 2006)

2008: Sherri Sparks, Shawn Embleton
(SMM rooktis, but not attacks on SMM!)

2008: Invisible Things Lab (Memory Remapping bug in Q35 BIOS)

2009: Invisible Things Lab (CERT VU#127284, TBA)

(checked box means new SMM attack presented; unchecked means no attack on SMM presented)

No SMM bugs
known...

...cannot read
SMM memory

(TSEG)...

...cannot look for
bugs in TSEG!

Oopsss…. A vicious circle!

So, how did we get around this vicious circle?

De-soldering?

Meet Atmel 26DF321 SPI-flash

De-soldered SPI-flash chip

Looks promising, but...

The BIOS image on the SPI-flash is heavily packed!
(inconvenient form for SMM auditing)

So, we used a different approach…
(but we wanted to show the “pics from the lab” anyway;)

Remember our Q35 bug from Vegas?
(We couldn’t actually present it during the conference as there was no patch then, but we published the slides a

few weeks afterwards)

4GB

Processor’s View DRAM

TOLUD

TOUUD 5GB

MMIO

REMAPBASE

REMAPLIMIT
remapping

This DRAM now accessible from
CPU at physical addresses:
 <REMAPBASE, REMAPLIMIT>
Otherwise would be wasted!

Memory Remapping on Q35 chipset

Now, applying this to SMM...

#define TSEG_BASE 0x7e500000

u64 target_phys_area = TSEG_BASE & ~(0x10000-1);
u64 target_phys_area_off = TSEG_BASE & (0x10000-1);
new_remap_base = 0x40;
new_remap_limit = 0x60;

reclaim_base = (u64)new_remap_base << 26;
reclaim_limit = ((u64)new_remap_limit << 26) + 0x3ffffff;
reclaim_sz = reclaim_limit - reclaim_base;
reclaim_mapped_to = 0xffffffff - reclaim_sz;
reclaim_off = target_phys_area - reclaim_mapped_to;

pci_write_word (dev, TOUUD_OFFSET, (new_remap_limit+1)<<6);
pci_write_word (dev, REMAP_BASE_OFFSET, new_remap_base);
pci_write_word (dev, REMAP_LIMIT_OFFSET, new_remap_limit);

fdmem = open ("/dev/mem", O_RDWR);
memmap = mmap (..., fdmem, reclaim_base + reclaim_off);
for (i = 0; i < sizeof (jmp_rdi_code); i++)
 ((unsigned char)memmap + target_phys_area_off + i) =
 jmp_rdi_code[i];

munmap (memmap, BUF_SIZE);
close (fdmem);

We see we can access SMM memory using this Q35 bug :)

Intel patched the bug in August 2008
(This was done by patching the BIOS code to properly lock the memory configuration registers)

So, what now?

VU#127284

I
n

t
e

l

We think TXT is essentially useless without
protection against SMM-originating

attacks...

That’s an exaggerated statement - we still
believe infecting an SMM is hard...

BTW, we just found a bunch of new SMM
bugs for Intel BIOSes + 2 working

exploits ;)

In
v

isib
le

 T
h

in
g

s L
a

b

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

December 2008:

We have provided Intel with the details of the new SMM issues
affecting their recent BIOSes on December 10th, 2008.

Intel confirmed the problems in their BIOSes as affecting:
“mobile, desktop, and server motherboards", without providing any more

details about which exact models are vulnerable.

We suspect it might affect all recent Intel motherboards/BIOSes.

Intel believes the issues might affect other vendors as well...

Intel contacted CERT CC informing them about the problem...

CERT has assigned the following tracking # to this issue:
VU#127284

We plan to discuss the details of the bugs at BH USA 2009 in Vegas...

Stay tuned!
(and don’t trust your SMM in the meantime)

More on the TXT Design Problem

Solution to the TXT attack is called: STM

I
n

t
e

l

Can we take a look at this STM?

STM is currently not available.

?

It is simple to write. There was just no
market demand yet.

?

In
v

isib
le

 T
h

in
g

s L
a

b

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

SMM Transfer Monitor (STM)

VM1 VM2 SMM

hypervisor (VMM) STM

SMI

Communication
protocol

Potential issues with STM

 STM seems to be non-trivial to write!
 CPU, memory and I/O virtualization for the SMM need to be implemented!

 VMM-to-STM protocol asks for a standard
 No STM in existence as of yet…

 also...

I
n

t
e

l

Who should write an STM?

OEMs/BIOS vendors!

Hmm… Isn’t Intel a BIOS vendor itself?

In
v

isib
le

 T
h

in
g

s L
a

b

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

I
n

t
e

l

Why should we trust BIOS vendors to
write bug-free STMs, if we don’t trust they

will write bug-free SMMs?

SMM must be “tuned” to each new
motherboard. STM could be written in a
generic way — no need to change STM

after it gets mature.

In
v

isib
le

 T
h

in
g

s L
a

bFair point.

The dialogs between ITL and Intel presented here have been modified for brevity and for better dramatic effect.

Intel told us they do have STM specification that answers some of
our concerns (e.g. that STM is difficult to write), and the spec is

available under NDA.

Intel offered us a chance to read the STM spec…
...but required signing an NDA.

…
We refused.

(We’d rather not tie our hands with signing an NDA — we prefer to wait for some STM to be available and see if we can break it :)

Intel might be right claiming that STM is the remedy for our attack.

There are some other issues with STM however…
e.g. how the STM will integrate with the SENTER measurement

process?

We cannot make our mind on this until we see a working STM.
…

Stay tuned! And cross your fingers!
…

If you are interested in sponsoring this research further, do not
hesitate to contact us!

Still, allowing TXT to work without an STM was, in our opinion, a
design error.

Summary

Intel TXT is a new exciting technology! It really is!
Intel “forgot” about one small detail: SMM…

We found and demonstrated breaking into SMM,
this allowed us to also bypass TXT.
Bonus: SMM rootkits now possible on modern systems!

Intel currently is patching the SMM bugs (BIOS),
We hope our presentation will stimulate Intel and OEMs to
create and distribute STMs — a solution to our attacks
against TXT.

http://invisiblethingslab.com

