
Subverting the Xen
hypervisor

Rafał Wojtczuk
Invisible Things Lab

Black Hat USA 2008, August 7th, Las Vegas, NV

Xen 0wning Trilogy

Part One

Known virtulization-
based rootkits

• Bluepill and Vitriol

• They install a malicious hypervisor in run-time

• ... On a system where no hypervisor is
present

• What if there is a legal hypervisor already
running ?

Subverting a legal
hypervisor

• Many analysts predict that in near future, many
systems will run some sort of hypervisor by
default

• If we modify the code or data structures of a
legal hypervisor, we may achieve capabilities
similar to the ones available for Bluepill or
Vitriol (stealth !)

Challenges

• The legal hypervisor can protect itself against
runtime modification, even if the attacker has all
privileges in the management OS.

• It may be nontrivial to reliably integrate the
backdoor code with the legal hypervisor

Opportunities

• No need to hide the mere presence of a
malicious hypervisor

• As the side-effects of its presence can be
attributed to the legal hypervisor

• A lot of required functionality is already
implemented in the legal hypervisor

• Particularly, protection of the hypervisor code
from the underlying VMs

Subverting Xen 3.x

• We will discuss: how Xen 3.x hypervisor code
or data (on x86_32 or x86_64) can be modified
in runtime to allow for backdoor functionality

• The implementation of a framework allowing to
load compiled C code into the hypervisor

• The implementation of two backdoors

 Xen architecture

Xen architecture, cntd

• Only Xen code runs in ring 0

• Directly loaded by a bootloader

• All administrative actions are done in a selected
VM (dom0)

• We would like to have backdoor access to
dom0

• Dom0 is under full control of the hypervisor

Xen architecture, cntd

• Dom0 has direct access to most of the
hardware

• So that device drivers written for dom0’s OS
(usually Linux) can be used

• Paravirtualization vs full virtualization

• Dom0 is a paravirtualized domain

Xen hypercalls

• Reminder: on Linux, system calls are reachable
from usermode by invoking int 0x80; the
handler for this interrupt invokes the
appropriate system call

• Similarly, on Xen, hypercalls are reachable from
the guest by int 0x82

• Examples: do_mmu_update, do_set_gdt

Getting control over
Xen

• We assume attacker has root in dom0 and
wants to install a stealth backdoor

• There were vulnerabilities related to pygrub
allowing to escape from domU to dom0
(CVE-2007-4993, CVE-2007-5497)

• Still, there is no supported method for dom0 to
alter Xen’s memory

• Rebooting into modified Xen is noisy

Papers by Luic Duflot

• Pacsec2007: Programmed I/O accesses: a threat
to Virtual Machines ?

• Abuses GART and USB subsystem in order to
overwrite arbitrary phys memory

• Cansecwest 2006: Security Issues Related to
Pentium System Management Mode

• SMM memory is locked nowadays...

How to abuse DMA

• Any DMA-capable device can access arbitrary
physical memory

• Including Xen’s code

• Dom0 can setup DMA !

• domU can be allowed to access some hw

• Can we conveniently setup an arbitrary DMA
transfer with a device used by OS, not
disturbing normal operation ?

Mitigation

• AMD’s IOMMU and Intel’s VT-d can restrict the
range of addresses that a DMA device can
access

• Not many chipsets support it today

• This presentation stresses the importance of
these mechanisms

• ...but in the next talk we will show the ways to
modify Xen, regardless of VT-d...

DMA with a NIC

• Loopback mode of NIC allows to copy data
between two locations in RAM

• It will disconnect us from the net for a
fraction of second; blame ISP

• We will load a modified NIC driver that will
reuse data structures of the original driver (as
we can’t unload the original)

• Still, we need to modify each NIC driver

NIC DMA diagram

Tg3dma demo

Abusing HDD
controller

• All tested HDD controllers called
dma_map_sg() in order to retrieve a suitable
bus address for a transfer

• Thus, we can use _any_ controller, without
modifying it: just change the behavior of
dma_map_sg()

Normal HDD operation

Hijacked dma_map_sg

When to cheat in
dma_map_sg hook ?

• We cannot pass Xen_A for all HDD operations
– fs or kernel corruption

• Let usermode call write(somefd, somebuffer,
length); will the dma_map_sg() parameters
correspond to somebuffer address ?

• Yes, but only in O_DIRECT mode; otherwise,
filesystems cache pages will interfere

Getting ring0 without
DMA

• Even if we have IOMMU or VT-d (configured
properly), there may be bugs in Xen code:

• Buffer overflow (or similar)

• Logic error in crucial code paths, e.g. In
memory management

• So the following slides are relevant

Xen memory layout

• What to overwrite with DMA ?

• Xen is loaded at physical address 0x00100000
by the bootloader

• On x86_32, substract 0xff000000 from the
virtual address of a Xen function/structure to
get its phys address

Important Xen
functions

• Hypercalls: stored in hypercall_table array

• Exception handlers: stored in exception_table

• Printk, copy_from_user, xmalloc

• We can get their virtual addresses from xen-
syms file; if the latter is not available, we need
some simple RE

What to overwrite ?

• We will overwrite (with DMA) the body of
do_ni_hypercall with „call first_argument”
assembly instruction

• Normally, do_ni_hypercall consists of
„return –ENOSYS”, it is unused

• Then if we invoke hypercall no 11 with the first
parameter X, the code at X will be executed in
ring 0; int run0(void *fun)

Xen loadable modules

• Xenload tool allows to load a relocatable ELF
object (module.o) into Xen; the algorithm:

• Link module.o with xenlib.o to module.xko

• Allocate space on Xen’s heap via
run0(xmalloc)

• Copy module.xko via run0(memcpy)

• Run0(init_module); DEMO

Xen backdoors design

• When idle, it must not modify anything in dom0

• ... So that a /dev/mem scanner running in
dom0 cannot detect it

• Arbitrary shell commands execution in dom0
when a „magic” network packet is seen

• The executed shell commands are not hidden
(more on this later)

Debug register
backdoor

• Dr backdoor sets dr3 and dr7 registers so that
when dom0 executes netif_rx(), debug
exception is raised

• When the (replaced) debug exception handler
sees exception from eip=netif_rx, it scans the
packet payload for the presence of „magic”
pattern; if found, execute shell with parameters
taken from the payload

• Dom0 can’t see the changed debug regs

Dr backdoor, cntd

• The fault to Xen happens very low in the
network stack, before the firewall sees the
packet

• The „magic” packet is never delivered to dom0

Dr backdoor, cntd

• Dr3 and dr7 are set:

• During inter-VM context switch to dom0

• In do_set_debugreg hypercall, when dom0
sets the relevant dr7 bits to 0 (indicating it
does not use dr3)

• Dr3 and dr7 are unset (released for dom0 use)
in do_set_debugreg hypercall when dom0
wants to use dr3

Dr backdoor, cntd

• When dom0 queries dr value via
do_get_debugreg hypercall, it is given fake
„shadow” values

• Unfortunately, due to the „lazy” handling of dr
assignments by Linux kernel, dr3 may remain set
(in-use by dom0) even when the debugged
process has exited

Dr backdoor, cntd

• When „magic” packet is seen, the exception
handler copies „trampoline” code to a
preallocated page in dom0 and transfers control
there

• The trampoline forks a shell by calling
call_usermodehelper_keys() and then self-
destructs by returning into memset

Dr backdoor demo

Dr backdoor detection

• When idle, it cannot be detected by memory
scan

• Perhaps the debug regs handling is not entirely
transparent...

• ... But the main problem is the timing analysis;
the first instruction of netif_rx() takes too
much time to execute !

• If the NIC drivers were in Xen space...

Foreign backdoor

• Dr backdoor hooks a function in dom0 and
thus is subject to timing analysis

• We need other method to inspect dom0’s state

• Solution: instead of hooking, scan periodically

• The „magic” condition must last longer than the
scan interval

Foreign backdoor, cntd

• Xen provides API for a domain to map pages
from other domain

• Only dom0 is allowed to do this

• We will start a „lurker” domain and make it
privileged (by altering Xen structures)

• When the lurker sees a „magic” condition, it
will spawn a shell in dom0

Foreign backdoor, cntd

• Currently the magic condition is: an sshd
process in dom0 received a „magic”
identification string

• When it happens, the lurker domain will
overwrite sshd stack and saved registers in the
kernel stack so that shell is executed

• What if dom0 is firewalled ? No big deal.

Foreign backdoor, cntd

• Xen offers API to

• Retrieve cr3 of a target domain

• Map a page by its physical address

• Libxenctrl library combines the two to produce
kernel virtual address resolution

• Xenaccess project can resolve userland
virtual addresses as well; but due to some
problems we don’t use it (and had to recode
this functionality)

Foreign backdoor, cntd

• Opensshd reads ident into a stack buffer

for (i=0; i<BUFSIZE; i++)

 read(sock_in, &buf[i], 1)...

 if (buf[i]==‘\n’) break

• So when the whole ident string has been
received, sshd sleeps in the read syscall, with the
count parameter being 1, and the buffer
parameter pointing just after the received

Foreign backdoor, cntd

• How to change the sshd process into shell ?

• We can set eip (on the kernel stack), we can set
the stack content, any problem ?

• NX+ASLR (present on modern Linux
distributions) is a problem

• Solution used: transit through sys_sigreturn and
sys_mprotect to make the stack executable; we
need no offsets !

Foreign backdoor demo

Foreign backdoor,
detection

• This time, timing analysis will not help, as the
backdoor executes in time slices devoted for
other domains

• The lurker domain can be hidden

• More work on this is needed, the „domlist”
loadable module is a good start

• Still, all information comes from the
hypervisor, so we can filter it

IPfrag backdoor

• Executes during inter-VM context switch, in Xen
address space

• So no need for a separate domain

• Walks the ipq_hash kernel table to locate all IP
fragments received so far; scans them for a
magic pattern

• Spoofed source IP may evade firewall

• No need to resolve userland addresses

IPfrag backdoor, cntd

• Note: foreign backdoor, if using legal domain,
can leave Xen code intact

• Show me the code !

• Not yet; there are significant implementation
differences in IP fragments handling between
Linux kernel versions

• Ipq_hash is not exported in kallsyms, need a
reliable way to find it

More on stealth

• The processes executed by the described
backdoors are well-visible

• We could hook int 0x80 handler to provide
system calls filtering...

• ... But it will fool only dom0 userland, not the
kernel

• So not implemented at all

More on stealth, cntd

• Instead of executing a separate process, we
could force some kernel thread (e.g. khelper)
or any other existing process to do the desired
action, maybe setup syscall proxy

• Better, but still visible from dom0 kernel

More on stealth, cntd

• The only really stealth operation is viewing of
the domain memory

• Maybe writing as well, in some cases

• If we want a backdoor capable of silently
extracting e.g. crypto keys from some dom0
process, it can be done

• It can „phone home” by many means; for
example, by altering contents of fragmented
ICMP echo requests

Thank you!

Xen 0wning Trilogy to be continued in:

“Preventing and Detecting the Xen Hypervisor

Subversions” (after the lunch)

by Invisible Things Lab

Bibliography
• Joanna Rutkowska, Subverting VistaTM Kernel for Fun and Profit, http://

www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf

• Dino Dai Zovi, Hardware Virtualization Rootkits, http://
www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf

• VMware Server, http://www.vmware.com/products/server/

• CVE-2007-4993,http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-4993

• Multiple integer overflows in e2fsprogs (Xen related),http://
www.mcafee.com/us/local_content/misc/threat_center/e2fsprogs.pdf

• AMD, AMD IOMMU specification 1.2, http://www.amd.com/us-en/assets/
content_type/white_papers_and_tech_docs/34434.pdf

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf
http://www.vmware.com/products/server/
http://www.vmware.com/products/server/

Bibliography cntd
• CVE-2007-4993,http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2007-4993

• Multiple integer overflows in e2fsprogs (Xen related),http://
www.mcafee.com/us/local_content/misc/threat_center/e2fsprogs.pdf

• AMD, AMD IOMMU specification 1.2, http://www.amd.com/us-en/assets/
content_type/white_papers_and_tech_docs/34434.pdf

• Intel,Intel Virtualization Technology for Directed I/O (Intel VT-d), http://
www.intel.com/technology/magazine/45nm/vtd-0507.htm?iid=techmag
_0507+rhc_vtd

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4993
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4993
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4993
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4993
http://www.amd.com/us-en/assets/content/_type/white/_papers/_and/_tech/_docs/34434.pdf
http://www.amd.com/us-en/assets/content/_type/white/_papers/_and/_tech/_docs/34434.pdf
http://www.amd.com/us-en/assets/content/_type/white/_papers/_and/_tech/_docs/34434.pdf
http://www.amd.com/us-en/assets/content/_type/white/_papers/_and/_tech/_docs/34434.pdf
http://www.intel.com/technology/magazine/45nm/vtd-0507.htm?iid=techmag%5C_0507+rhc%5C_vtd
http://www.intel.com/technology/magazine/45nm/vtd-0507.htm?iid=techmag%5C_0507+rhc%5C_vtd
http://www.intel.com/technology/magazine/45nm/vtd-0507.htm?iid=techmag%5C_0507+rhc%5C_vtd
http://www.intel.com/technology/magazine/45nm/vtd-0507.htm?iid=techmag%5C_0507+rhc%5C_vtd
http://www.intel.com/technology/magazine/45nm/vtd-0507.htm?iid=techmag%5C_0507+rhc%5C_vtd
http://www.intel.com/technology/magazine/45nm/vtd-0507.htm?iid=techmag%5C_0507+rhc%5C_vtd

Bibliography cntd

• Luic Duflot, Programmed I/O accesses: a threat to Virtual Machines ?,
htttp://www.ssi.gouv.fr/fr/sciences/fichiers/lti/pacsec2007-duflot-papier.pdf

• Luic Duflot, Security Issues Related to Pentium System Management
Mode, http://cansecwest.com/slides06/csw06-duflot.ppt

• halfdead@phear.org, Mistifying the debugger, ultimate stealthness, http://
www.phrack.com/issues.html?issue=65\&id=8

• XenAccess Library, http://code.google.com/p/xenaccess/

http://cansecwest.com/slides06/csw06-duflot.ppt
http://cansecwest.com/slides06/csw06-duflot.ppt

