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Abstract

We discuss three software attacks that might allow for escaping from a VT-d-protected driver domain 
in a virtualization system. We then focus on one of those attacks, and demonstrate  practical and 
reliable code execution exploit against a Xen system. Finally, we discuss how new hardware from 
Intel offers a potential for protection against our attacks in the form of Interrupt Remapping (for client  
systems available only on the very latest Sandy Bridge processors). But we also discuss how this 
protection could be circumvented on a Xen system under certain circumstances...

Page 1



Wake up, Neo...

The Matrix has you...

Follow the white rabbit.
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Introduction

What is Intel VT-d?

Intel VT-d, a hardware technology for device virtualization, also known as IOMMU, is one of the several key 
technologies  that  together  comprise  The Matrix Intel  Virtualization Technology  (VT).  VT-d complements 
another  hardware technology,  VT-x,  which is  used for  CPU and memory virtualization.  VT-d is  also an 
important element for Intel TXT technology, which itself is Intel's key approach to Trusted Computing.

One can argue that Intel VT-d and Intel TXT are the two most important technologies for building secure 
operating systems, especially desktop systems [2], no matter whether one builds a system based on safe 
language, on formal verification of a small microkernel, or on some other approach,

Previous work on attacking Intel VT-d

We are not aware of any previous work on software attacks against Intel VT-d technology, nor against any 
other IOMMU technology.

The attacks discussed in this paper abuse devices ability to send malicious interrupts, and, as discussed at 
the end of  the paper,  can be prevented with  Interrupt  Remapping,  technology available on recent  Intel 
platforms (in case of client systems, only on the very latest Sandy Bridge processors), but, we have found no 
mention in the official Intel specs, that Interrupt Remapping is security-critical element of VT-d.

To be fair, however, we have found presentation slides from Intel  engineers  [3] that briefly mention the 
security role of Interrupt Remapping, specifically saying that “Without [Interrupt Remapping], malicious guest  
can attack a host by [g]enerating interrupts”. However, the presentation doesn't mention what type of attacks 
could be carried this way, how serious they could be, and generally doesn't provide any details on those 
attacks. This might  create a wrong impression that the only attacks possible are DoS attacks – as e.g. 
expressed by one of the KVM developers [4].

Our paper shows how the lack of  Interrupt  Remapping might  allow for  the most critical  code execution 
attacks on a VMM system.

The attack scenario

In this paper we assume a modern virtualization system which makes use of Intel VT-d in order to create so  
called driver domains, or driver virtual machines (VMs). Such domains are similar to traditional guests, with 
an exception that they have been assigned direct access to some select physical devices, such as network  
cards, or disk controllers.

Driver domains are desirable on both server, as well as on client systems. In case of the former they could  
bring significant performance benefits over the traditionally virtualized devices. New hardware technologies, 
such as Single Root I/O [5], allow to natively share a single physical device among many guests. Example of 
virtualization systems that support driver domains are Xen [6], and VMWare ESX [7].

On client systems, driver domains could be used to improve security of the system by sandboxing select 
subsystems and drivers, such as the networking subsystem and networking drivers [2]. Qubes OS [8] and 
Xen Client  [9] are examples of  client  systems that  use VT-d-isolated network domains. Xen Client  also 
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requires VT-d to allow for direct access to the GPU to select user VMs. In this case, all the user VMs that 
have been granted access to the GPU could be also considered as driver domains for the purpose of this 
paper, and so could be used to trigger the attack (ironically, usually the least trusted VMs would be allowed  
direct access to the GPU, such as e.g. “gaming” VMs).

The attacks that we consider in this paper originate from one of such driver domains and attempt to gain full  
control over the whole system1. We assume that the attacker already somehow managed to gain full control  
over the driver domain – e.g. as a result of exploiting a buggy WiFi driver [10] or DHCP client [11] in the “Net 
VM”. Normally the properly used IOMMU should constrain the attacker from compromising the rest of the 
system2.

We also assume the platform doesn't support Interrupt Remapping, which is true e.g. for all client systems 
before Sandy Bridge processors. All the experiments have been conducted on a 64-bit Xen 4.0.1.

1 Specifically, our exploit, presented later in this paper, succeeds at executing arbitrary shellcode in the hypervisor.

2 We should note, that without hardware IOMMU technology, such as VT-d, it's not possible to safely grant a VM access to any DMA-
capable device, as the VM would always be able to attack the rest of the system via DMA attacks (see e.g. [12])

Page 5



Message Signaled Interrupts (MSI)
The attacks we describe later in this paper work by forcing the corresponding device3 to generate a so called 
Message Signaled Interrupt (MSI).  Thus, we start by first describing what MSI is, and also methods for  
generating MSIs.

The MSI interrupt format

Legacy systems used special out-of-band mechanisms for interrupt signaling (special pins and wires on the 
motherboard). All newer systems, especially those which employ PCI Express interconnect, use an in-bound 
mechanism for interrupt signaling that is called Message Signaled Interrupts.

From the device's point of view, an MSI is an ordinary PCI/e Memory Write transaction, just that it is destined  
to a special physical address. Those special addresses for MSIs that are recognized by the processor4 as 
interrupts are defined by Intel in the Software Development Manual (vol. 3A, chapter 10.10).

Specifically, the figure below shows the format of the destination address for MSI (a copy from Intel SDM):

So, any5 PCIe write transaction to address  feeXXXXh results in an interrupt being signaled to one of the 
CPUs in the system. The specific CPU(s) can be further selected via the Destination ID, RH and DM fields.

The data part of the PCIe write packet that signals the MSI has the following format (a copy from Intel SDM):

3 That is the device assigned to the driver domain.

4 In fact it's the Local Advanced Programmable Interrupt Controller (LAPIC) that translates MSI writes into interrupts and delivers  
them to the CPU. Of course on modern hardware, LAPICs are part of the processor die.

5 The additional requirement is that the data payload be exactly 4 bytes, as it is discussed later.
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There are two important fields here:

• The Vector field, that in most cases translates to the interrupt vector that is signaled to the processor 
(these are the same interrupt vectors as used for IDT addressing, allowed values are in the range: 
0x10-0xfe),

• The Delivery Mode that tells LAPIC how the interrupt should be interpreted. The most common value 
here would be Fixed or Lowest Priority, which would cause LAPIC to deliver “normal” interrupt with 
the vector specified in the Vector field.

Below we investigate three MSI attacks originating from driver domains: one to deliver a SIPI interrupt, one 
to inject a syscall or a hypercall interrupt, and finally one to inject an #AC exception to the system. All of  
those attacks work by filling the above fields with some special values.

Software approach to generate MSIs

What makes the MSI-based attacks especially interesting, is that in most cases it is possible to mount such 
an attack without cooperating hardware (malicious device), using entirely innocent and regular device, such 
as an integrated NIC6.

This is possible, because each MSI-capable PCI/PCIe device contains a special capability registers in its PCI 
configuration space that are used to configure MSI signaling. Specifically, the MSI capability contains two 
registers that lets the system software to configure the address and data payload of packets used for MSI 
generation (see above). This means that system software can configure any MSI-capable device to generate 
any type of MSI – with arbitrary vector and delivery mode.

This means that  all that is necessary for software to configure a device to generate arbitrary MSIs is an 
access to the device configuration space.

Configuration space access restrictions on Xen

We should  stress,  however,  that  some VMMs,  such as Xen,  implement  special  precautions  in order  to 
restrain driver domains from being able to fully control the assigned devices' configuration space.

In case of para virtualized driver domains (PV domains), Xen, by default, doesn't allow write-access to most 
of the device configuration space7.  Because some devices might not function correctly in this case, Xen 
offers two workarounds. First (the default one) there is a small database of per-device “quirks”, i.e. listings of  
configuration space registers for each specific devices, identified by DID:VID, to which the guest should be 
granted write-access. Another option is to set the special  permissive flag8, which globally causes all driver 
domains to gain full access to the configuration spaces of their corresponding devices.

A few months ago there have been an interesting discussion on the Xen-devel mailing list about the purpose 
of this very flag and reasons why users might not want to use it9. The discussion was, incidentally, started by 
one of the authors of this paper (back then unaware of the threats from MSI-based attacks), and involved  
participation of key Xen developers. The discussion generally reached a conclusion that it was safe to set the 
permissive flag, because VT-d should still  be able to prevent any potential  damage that a compromised 
driver domain or a malicious device could do to the rest of the system, while at the same time providing 
users with the most smooth operation of their devices, without the need for using per-device quirks. With a 
notable exception of Ian Pratt (Xen Chief Architect), who expressed concerns of some devices potentially  
being able to trigger SMIs in response to configuration space accesses and also to potential problems with  
intentionally overlapping MMIO regions, which VT-d could not prevent. None of the participants pointed to 
problems caused by MSIs.

The bottom line of the above is that even to a group of the most experienced Xen developers, it wasn't clear 
that driver domains should really be constrained from accessing their assigned devices' configuration space,  
and some even recommended to always allow full access to configuration space.

In the case of fully virtualized Xen guests (HVM guests), the access to the configuration space is also limited,  
and granted mostly to unknown registers, and some known registers that are considered safe, such as the 

6 There are also ways to compromise VT-d using malicious devices, but in this paper we focus only on software attacks, and assume  
that all the hardware is intact.

7 Some of the allowed write accesses include the command register, so e.g. enabling/disabling of MSI, bus master enable bit, etc., 
but not defining MSI parameters, such as address and data payload for MSI packets.

8 The permissive flag is an argument for the Xen PCI backend.

9 See the full thread here: http://lists.xensource.com/archives/html/xen-devel/2010-07/msg00257.html
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Command register. The MSI configuration registers are among the known registers, and accesses to them 
are always emulated by Xen. Thus, HVM guests cannot spawn an MSI attack by directly manipulating their  
devices' MSI configuration registers.

Generating MSI without access to device config space

However, we have discovered that even without access to the device configuration space10, still in case of 
many devices the driver would be able to program the device to generate an MSI, and consequently could  
still mount a software-only attack against VT-d. This is because many devices support a so called Scatter 
Gather mechanism, that allows to split one DMA transaction into several smaller ones, each destined to a 
different memory location11. 

The idea is to use such a scatter gather mechanism in order to generate a 4-byte memory write transaction  
that will just happen to be destined to a special 0xfeeXXXXX address – in other words to generate MSI using 
regular DMA write.

MSI generation on Intel e1000e NIC

I know Kung Fu.

-- Neo

To provide a practical example that it is indeed feasible to generate MSI from an untrusted driver domain that 
doesn't  have any  special  access  to  the  device  configuration space,  we have  used  the  Intel  integrated 
network card, the popular e1000e12. We have programmed the card's scatter gather unit to always split the 
incoming packets into two parts: the first 128 bytes, which will be written to some dummy address, and the 
remaining part that will be sent to the magic 0xfeeXXXXX address. Now, if we send an ICMP echo request 
with exactly 90-bytes of payload this will result in the ICMP echo reply packet coming back (with the same  
payload) with a total size of 128+4 bytes, i.e. counting also the Ethernet frame. If we carefully chose the  
payload of ICMP Request, so that the last 4 bytes contain a meaningful MSI data payload, then the delivery  
of those last 4 bytes of the packet will cause MSI generation in the system!

In practice, the attacker will restore NICs normal operation soon after the MSI was generated. It might also  
be possible to use the NIC in a loopback mode, so without the need to relay on some external host to ping  
packets back to us13.

10 So, e.g. when considering an attack coming from a Xen HVM domain, or from a PV driver domain run with the permissive flag  
cleared.

11 Most devices do not allow for generation of very small DMA writes and we need a 4-byte write to emulate MSI – no more, no less,  
but exactly 4 bytes of data payload. Hence the idea to use Scatter Gather mechanism.

12 Naturally the integrated NIC is a likely candidate to be assigned to the system's untrusted Net VM.

13 The key observation here is that if we want to use NIC for DMA write to the host DRAM, we must somehow deliver a packet to the  
NIC, so it could write it to the RX buffer in the host memory.
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The Attack #1: The SIPI attack

About SIPI interrupt

The SIPI interrupt, which stands for  Start-up Inter Processor Interrupt, provides a key functionality to any 
multi-processor (or multi-core) Intel-based system. It is the SIPI interrupt that is used by the BIOS to initialize  
all  the processors upon boot, and to distribute work amongst them. When the platform boots, only one  
processor is active – it is called the Boostrap Processor or BSP – and its the job of the BSP to initialize and  
get other processors (called Application Processors or AP) running.

SIPI  interrupt  directs  the  destination  CPU  to  start  executing  special  start-up  code  located  at  address 
0xVV000, where VV is the vector passed as part of the SIPI interrupt. In order for SIPI to have any effect on  
a CPU, the CPU must first be sent an INIT interrupt, which resets the CPU and puts it into a wait-for-SIPI  
state. In normal situation BSP sends SIPI interrupts to all other processors in the system (APs).

The only documented mechanisms for delivering a SIPI  interrupt is via programming Local APIC control 
register called Interrupt Command Register (ICR) as described in Intel Software Developers Manual, Vol. 3A, 
chapter 10.6. The ICR register is depicted below (a copy from Intel SDM):

The LAPIC registers are mapped into physical address space (typically starting at base address 0xfee00000) 
and can be accessed only from a CPU.

However, we have found a way to generate SIPI interrupts also from PCIe devices...

The SIPI Attack Idea

If we look closely at the MSI data payload and compare it with the ICR register described in the previous 
section, we can spot some common fields, such as Vector and Delivery Mode. 

Interestingly, the Start Up Deliver Mode (so, the SIPI interrupt), which is available via LAPIC's ICR register, is  
not present in the MSI data format. The binary value 110b, which otherwise we would expect to be used for 
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SIPI in MSI packets, is marked as Reserved in the MSI packet documentation.

But apart from this, the similarities between the format of the Delivery Mode and Vector fields between ICR 
and MSI data packet are striking. So, we couldn't resist to see what would happen if we send an MSI packet  
from our device with a  Delivery Mode set to (officially forbidden) value  110b. Just as we anticipated, this 
resulted in a SIPI interrupt being delivered to one of the AP processors!

This is a significant result, because in our MSI message we can additionally specify a Vector field, which will 
be interpreted as part of a physical address (0xVV000) where the receiving CPU should jump to, and from 
where it should start fetching instructions.

In other words, we can selectively restart one of the processors in the system and get it executing code from 
an almost arbitrary address (constrained to 0xVV000). This means that if the attacker managed to place (or  
find) a shellcode within the 0-1MB range, the shellcode will  be executing unconstrained by any system 
isolation mechanisms,  and will  have access  to  the full  system memory,  e.g.  to  all  processes  or  virtual 
machines memory.

Shellcode injection difficulty

One  mitigating  factor  for  the  above  attack  is  the  potential  difficulty  for  the  attacker  to  place  (or  find) 
meaningful instructions (the shellcode) in the physical memory below 1MB, and more precisely starting at 
page boundaries  (aligned to 0x1000).  We consider  this  to be a  system-software-specific  challenge, but  
definitely not impossible. 

For  example,  if  the  system software  makes  use of  the  memory  below 1MB (specifically  0-640kB)  and 
allocates this memory, like any other non-reserved memory, to various processes or Virtual Machines, then it  
might be easy for the attacker to control this memory and place a meaningful shellcode there, and later 
trigger INIT and SIPI and get it executed with system privileges14. Indeed, if not for our SIPI attack, there is 
really nothing that should prevent the system-software from using this low memory.

System-software that doesn't allocate low memory to its processes or VMs, like e.g. Xen hypervisor, might  
still be exploitable, although we haven't figure out yet a general method to achieve it.

VMX and INIT blocking

Intel processors offer a partial mitigation against SIPI attacks by blocking INIT interrupts when a CPU is in  
the VMX root15 mode (VT-x).

14 We have found, however, that Xen hypervisor never allocates the low 1MB of memory to any of the guests. This doesn't mean other 
VMMs or OSes do not do this as well.
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However, an INIT and SIPI interrupts sent to a CPU during time when it is in a VMX mode are remembered 
and delivered, perhaps hours later, when the CPU exits the VMX mode (so immediately after it executes 
VMXOFF instruction)16.

This means that an attacker, who manged to send INIT and SIPI interrupts at some point when all  the  
processors were in a VMX mode, can still hope to get the shellcode executed at a later time, specifically 
when the system will be going for reboot or shutdown17. This means the attacker's shellcode will be executed 
with full ring0 permissions at the stage when the system is shutting down.

This presents two potential attack possibilities for the attacker. First, if the operating system or VMM doesn't  
properly clean the memory, then the attackers shellcode will be able to steal some sensitive data that still  
remains in DRAM, and likely will also be able to leak them out, e.g. through one of the NIC interfaces.

In case the operating system or VMM is carefully designed to scrub the memory before disabling VMX, the 
attacker will not gain immediate advantage of executing the shellcode at shutdown time. However, because 
the attacker's shellcode executes with ring0 permissions, it opens many opportunities for the attacker to 
spawn additional attacks, that normally would not be possible to conduct, such as attacks on BIOS flash 
memory, or TXT bypassing attacks.

Indeed, as it has been demonstrated in practice, an attacker who had access to the Master Boot Record (i.e. 
can infect MBR, or some early OS loader, such as GRUB), was able to: 1) reflash secure Intel vPRO BIOS 
with arbitrary code, despite digital signatures were used for protecting the BIOS [15], 2) bypass Intel TXT 
trusted boot [14].

The attacker could also create a bridge between two NICs in the system, e.g. to leak some secrets from a  
confidential, otherwise isolated network, to the public network.

For all those actions the attacker's shellcode might need to delay the CPU shutdown process.

SMX and INIT blocking

When the VMM is started via SENTER instruction and so the system runs in the SMX mode, then the 
delivery of  INIT causes immediate platform shutdown if  outside of  VMX (and if  in VMX mode, then the 
shutdown happens immediately after leaving VMX mode). This means that the SIPI attack doesn't  work 
against TXT-loaded systems (unless the attacker is interest in DoS attacks only).

Summary

The SIPI attack vector is a direct result of allowing devices to generate SIPI interrupt and having the Local 
APIC deliver this SIPI to one of the CPUs in the system. We cannot really find any good reason that would 
explain why a device might need to generate such a disturbing interrupt as SIPI. In fact, even the official Intel 
documentation explicitly excludes SIPI from available interrupt delivery methods.

We believe the fact that SIPI could nevertheless be generated from devices and delivered to a CPU is an  
implementation-level security bug.

The attack seems to be mitigated in practice by the difficulty to place meaningful shellcode in the physical  
memory below 1MB. However, in some circumstances the exploitation might still be possible, e.g. if this  
memory is not specially protected by the VMM (and none of the Intel spec suggests it should be protected in  
any way).

The attack seems to be fully prevented when the VMM is launched via a TXT-based trusted boot.

15 When the processor is in VMX guest mode, delivery of INIT causes a normal VMEXIT, of course.

16 We have tested this by placing a shellcode that plays a tune, and then we delivered the SIPI. After some time, when we rebooted 
the system, we could hear our tune being played, just before the platform reboot :)

17 Theoretically the system software might not execute VMXOFF before doing a platform shutdown, but this seems unlikely and would 
rather be considered a software bug.
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The Attack #2: The syscall injection attack

The idea of the attack

In this variant of an MSI attack we inject a well-known syscall or hypercall interrupt vector, such as 0x80  
which is used as a legacy syscall on Linux, or 0x82 which is used as a legacy hypercall on Xen. Let's further  
focus on 0x82 injection, as it relates directly to Xen.

When the CPU gets an interrupt with such a vector, it thinks it was a hypercall issued by whatever domain 
was active at  the time when the interrupt  was delivered. Thus, if  we somehow managed to deliver  the 
interrupt at the time when Dom0 was active on the CPU, then Xen will think that Dom0 issued the hypercall  
and thus the permission context used to execute the hypercall will be that of Dom0 (so, full permissions).

One can expect that there are hypercalls that, when called by Dom0 with carefully chosen arguments, can 
provide some advantages to the attacker. In case of Xen an example of such a hypercall  could be the  
do_domctl hypercall, and specifically its  XEN_DOMCTL_set_target sub-command, that allows to grant 
control  rights  over  one domain to  another.  Using this  hypercall,  the attacker  can ask Xen to  grant  the 
attacker's  untrusted  domain (the driver  domain)  control  over  the  Dom0 domain,  essentially  making  the 
attacker's domain super-privileged and all-mighty.

Register values

The key challenge for an attacker in making this attack successful in practice is how to ensure proper values  
of some registers at the moment when the interrupt arrives?

While definitely not an easy task, we think it might be possible to find code paths in some backend processes 
running in Dom0 (or  similar  trusted entity  in case of  other  VMMs or  OSes) where the registers  will  be 
conveniently set. In the case of Xen VMM, it could perhaps be some branch in the Xenstore Daemon which  
is responsible for processing the Xenstore's incoming data. Timing is, of course, crucial in such an attack 
and it makes the whole process so difficult in practice. Especially, that, as explained below, the attacker  
might only have a single chance to test the attack...
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The EOI register resetting

One additional (but accidental) problem that makes the exploitation even more difficult for the attacker is the 
need to reset the EOI register after the interrupt injection.

Normally, every hardware interrupt handler (also called Interrupt Service Routine) is responsible for resetting 
the so called  End Of Interrupt register (EOI) in the Local APIC, which is done by performing a write-to-
memory by the CPU to an address where LAPIC EOI register is mapped at.

However, the interrupt handlers for software-generated interrupts, such as 0x80 or 0x82 which are used for  
syscall  or  hypercall  transitions,  and are  not expected to be used for  servicing any hardware-generated 
interrupts originating from devices, do not reset EOI register.

The above presents a problem for the attacker, because after injecting e.g. the 0x82 interrupt, the Local  
APIC will be expecting system software to clear EOI, and until that happens all subsequent 0x82 interrupts  
(as well as all other, lower priority ones) will be blocked. In practice this means the system will  become 
unusable.

In  order  to  unlock  the  system,  the  attacker  would  have  to  succeed  with  the  attack  (i.e.  executing  the 
“hypercall of death”) with the first attempt. If the attacker succeeded, it would allow them to now execute  
some code that would clear EOI, and so to recover the system from a temporal lock down.

But, if the attacker doesn't succeed with the first attempt, the system will remain in the locked state (at least  
this one processor) and further exploitation attempts will not be possible anymore (at least using the same 
processor), as this very interrupt the attacker wishes to use for the attack will be blocked until EOI is cleared.

Unfortunately for the attacker, the delivery of other hardware interrupts in the meantime, like e.g. a clock  
interrupt, will not unblock the delivery of 0x82. This is because the delivery of those other interrupts would 
either be disabled, if their vectors were numerically smaller than 0x82, or would not affect the 0x82 interrupt  
mask, in case their  vectors were numerically larger than 0x82, as the LAPIC logic is to always unblock  
interrupts starting from he highest priorities whenever a CPU executes a write-to-EOI.

Summary

In case of this attack, the problem is related to the legacy of the x86 architecture. While most (all?) other  
architectures  have special  instructions for  syscall  generation,  on early  x86 processors it  had become a 
common practice to use interrupts for various system calls, such as int 0x16 for BIOS services, int 0x21 for  
DOS services, int 0x2e for Windows NT syscalls, int 0x80 for Linux system calls, etc. Even though current 
x86 processors do have dedicated syscall instructions, most OSes still expose the legacy, interrupt-based 
services, even including such new system software like Xen!

Such reuse of interrupts for syscall and signaling strikes as a bad design mistake and the described attack 
demonstrates why it is so. Of course in the past, long before technology such as VT-d was even considered  
for use on x86 architecture, and when all drivers and devices must had been trusted, it wasn't so much a  
security problem and instead “just” a problem of aesthetics. Unfortunately, as it often happens, inelegant 
designs finally often lead to very practical errors and problems later. And this is exactly what has happened 
here. 

Note that besides int 0x80 and 0x82, Xen uses other interrupts internally as well. They are used for inter-
processor communication,  and are triggered via inter-processor interrupt  mechanism (IPI).  For  example,  
when one CPU wants to execute code on another CPU, it sends IPI with vector CALL_FUNCTION_VECTOR 
(0xfb). It is unclear whether an attacker can compromise Xen system by manually sending MSI message 
with one of  these internally used vectors; however again, it  is very worrisome that  a device can trigger  
execution of interrupt handlers meant to be used only internally by the processors.

This attack should never be possible on a well-designed architecture. There is no reason why a device might  
be allowed to signal  a  syscall  or  hypercall  to the processor.  The attack results  from the messy design  
decisions made in the early days of x86 architecture.

Further in this paper we present how this attack could be reliably  used in practice to escape from a driver 
domain on a Xen system.
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The Attack #3: The #AC injection attack

The #AC injection attack idea

The  #AC injection  attack  exploits  a  similar  problem  in  x86  architecture  as  the  syscall  injection  attack  
described above. However, in this case we try to confuse the CPU about the stack layout that the exception 
handler  expects  to see. On the figure below we present the layout of  the stack that is expected by an 
exception handler for all exceptions that generate error code, such as #AC, as well as the stack layout that is  
actually build by the processor when a hardware interrupt is delivered, such as MSI with vector = 0x11, 
which incidentally corresponds to #AC exception.

The #AC exception is in fact the only one exception that meets the following two requirements:

• Has a vector number greater than 15, so that we could deliver it via MSI18

• Is interpreted as exception that stores an error code (other exceptions, with vectors greater than 15,  
do not store error code on the stack, and so there will be no difference in expected and actual stack 
layouts seen by the handler).

If we now deliver an MSI with vector = 0x11 (#AC) from some device, it will trigger #AC handler execution on  
the target CPU. Because the handler expects the stack layout with error code placed at the top of the stack, 
thus it will misinterpret all other values passed on the stack.  Thus, the CS placed by the CPU when the  
interrupt arrived will now be interpreted as RIP, RFLAGS as CS, and so on (see the figure above).

When the exception handler finishes, it executes IRET instruction that pops the previously saved register 
values from the stack and jumps back to CS:RIP. This means the handler will return, in fact, to RFLAGS:CS 
address instead!

Because we can (mostly) control RFLAGS in the guest, we can setup RFLAGS so that it looks like a valid  
privileged CS segment selector. In case of Xen, there is a slight complication: the default selectors have 
e0XXh format, and we cannot set RFLAGS (from within VM) to this value, because it means setting one of  
the  privileged  IOPL bits.  Therefore,  we  need  to  create  valid  LDT  entries  (by  legally  issuing 
MMUEXT_SET_LDT hypercall), which would make it now possible to use low numbered selector values, that 
we could now “set” via RFLAGS.

We don't control the CS that was stored on the stack (and which is now interpreted as RIP by IRET), but we 
know that CS is a 16-but register, so it translates to a small number, when interpreted as RIP. We can easily 

18 MSI cannot be used to deliver interrupts with vectors 0-15.
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use mmap() to allocate some memory in our guest so that we can place arbitrary instruction at the virtual  
address pointed by the “CS” pointer. Because we would set RFLAGS to read as ring0 CS selector, now our  
shellcode in our guest would be executed with ring0 privileges, which, in case of para-virtualized guests  
under Xen means hypervisor privileges.

This attack will likely not work against fully virtualized guests (that use VMX guest mode), though. This is  
because of the very limited ability to control the address space and selectors of in the root mode.

Practical exploitation attempts on Xen

We have tried to exploit this attack on a Xen system. The Xen's #AC handler is mostly implemented by the  
do_trap() function, which calls the search_exception_table() function with a task to check whether 
the RIP  that  caused the exception is  "special",  namely is  present  in  a  special  predefined table  (called  
exception_table), and if so, the handler should not panic, but instead resume execution at the "error" 
branch  of  the  code  that  triggered  the  exception.  The  same  mechanism  is  used  to  implement  the 
copy_from_user() primitive, that we discuss later in The practical MSI attack on Xen.

Thus,  if  we could force #AC handler  to think that  the exception was thrown from one of  these special  
addresses, we would avoid the undesired call  to  panic().  Unfortunately, as it has been just discussed 
above, the #AC handler interprets the value of CS stored in the exception frame as the RIP. CS is 16bit  
register,  which  means  the  resulting  “RIP”  is  a  very  small  number.  This  is  a  problem,  because  all  the 
addresses in the exception_table are in the hypervisor range, near the top of the address space. Thus, 
search_exception_table() will inevitably fail.

Note this is a pure lucky coincidence (for Xen) – the integrity of crucial data structures (exception frame) has 
been violated, it's just that the attacker cannot avoid a call to the panic() function.

Anyway, here is a copy of the Xen oops we were able to achieve with this attack:

(XEN) ----[ Xen-4.0.1  x86_64  debug=n  Tainted:    C ]----
(XEN) CPU:    0
(XEN) RIP:    0206:[<000000000000e008>] ???
(XEN) RFLAGS: ffff82c480367f28   CONTEXT: hypervisor

Summary

Similarly  as  with  the  previous  attack,  the  problem we exploit  here  is  related  to  the  legacy  of  the  x86  
architecture,  specifically  the  messy  design  of  the  IDT,  where  exceptions  vectors  are  intermixed  with 
hardware interrupts. Interestingly one can even see some attempts from Intel to somehow mitigate such 
attacks,  which  are  expressed  by  requirement  that  MSIs  cannot  deliver  interrupts  with  vectors  0-15.  
Unfortunately Intel must have forgot about the next 16 vectors (16-31), that are also reserved for exceptions  
or just marked “Intel reserved”, and specifically about #AC which is vector #17...

This attack, again, should never be possible on a well-designed architecture. There is no reason why a  
device might be allowed to deliver an exception, especially #AC, to the processor. The attack results from 
messy design decisions made in the early days of x86 architecture.

The successful  exploitation in practice might be mitigated by the actual  implementation of the exception  
handler, e.g. by the exception handler halting the system, instead of trying to resume execution, like it is in 
case of Xen. The attack seems to also be limited to PV guests only.
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The practical MSI attack on Xen
Stop trying to hit me and hit me!

-- Morpheus

In the previous chapters we have described three different MSI-based attacks against VT-d, where each of 
the  attacks  was  theoretically  capable  of  executing  custom code  in  the  hypervisor  context.  In  practice, 
however,  and  specifically  when considered in the context  of  a  Xen-based system,  each  of  the attacks 
seemed somehow mitigated by various, often accidental circumstances. This might have created a wrong 
impression on the reader,  that  in practice such exotic attacks would never  work, and so are not  to be  
considered a problem in practice. We have thus decided to spend a bit more time on one of those theoretical  
attacks with the aim to turn it into a practical one...

The Hypercall Injection MSI Attack recap

Specifically, we have focused on the MSI-based hypercall injection attack. The attack seems very hard to  
exploit in practice, because, it seems, the attacker would need to trigger the MSI in the very moment when  
the CPU (the one which would serve the MSI) would be executing such a piece of code, so that some select  
CPU registers have specific values, that when interpreted as hypercall arguments would 1) make sense, and 
2)  bring  some  advantage  to  the  attacker.  Additionally,  the  attacker  was  constrained  by  the  fact  that 
hardware-generated  hypercall  leaves  the  Local  APIC with  uncleared  EOI  flag,  effectivelly  blocking  any 
further  attempts  of  hypercall  interrupt  delivery from devices  for  this  specific  LAPIC.  In  other  words,  the 
attacker would only be able to try to trigger the hypercall once for each processor in the system. The above 
description certainly suggested that the attack is a mere theoretical problem...

The Trick!

It has the same basic rules. Rules like gravity. What you must learn is that these rules are no different than  
the rules of a computer system. Some of them can be bent. Others can be broken. Understand?

-- Morpheus

However, after we have analyzed the actual hypercall handler implementation in Xen, we have figured out a  
clever exploitation approach that allowed to get around the above mentioned problems. Below is a fragment 
of the copy_from_user() function used by Xen hypercall handler for accessing the hypercall arguments19:

; rax – len of data to copy from usermode

; rsi – source buffer

; rdi – destination bufer

mov    %rax,%rcx

shr    $0x3,%rcx ; rcx = len/8

and    $0x7,%rax

rep movsq %ds:(%rsi),%es:(%rdi) ; slow operation

mov    %rax,%rcx ; rcx = len % 8

rep movsb %ds:(%rsi),%es:(%rdi)

The  rep movsq instruction is a copy operation that executes  rcx times. Let's assume the source operand 
points to a slow memory, such as some MMIO of a device. A typical speed of such a slow memory could be  
of the order of single MB/s, which is very slow, comparing to even unbuffered reads from DRAM, which have 
speeds of the order of single GB/s.

Now, let's imagine that the attacker issued a hypercall from a driver domain (this is a legal action, and every 
domain can issue a hypercall to obtain some service from the hyperisor). Additionally the input arguments for  
the hypercall (buffer) was chosen to point to a virtual address in the attacker's domain that is mapped to 

19 The actual implementation is written in GCC inline assembly and the instruction between the two rep mov instructions is written as 
mov %3, %0, which means the actual registers used in the generated code are left up to the compiler (in fact only %3, as %0 is  
specified to be always rcx). We were just very lucky that the default gcc in Fedora 13 used eax register in place of %3, making our 
attack possible – see below. On Fedora 14, however, we observed the compiler uses r8 instead of rax for %3, unless the –finline-
functions flag is explicitly used.
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MMIO memory of the device that has been assigned to the domain (we assume it is NIC, specifically Intel  
integrated e1000e ethernet controller).

Because the MMIO memory is slow, and because we can choose a hypercall  that expects some larger 
buffer20, we have determined that some 80-90% of time for servicing such a hypercall will be spend in the rep 
movsq instruction mentioned above.

That means that if the attacker, in the meantime, issues an MSI, the chances of it being delivered at the time  
when the processor is executing the rep movsq instruction are very high. Even if we cannot precisely control 
the timing of MSI generation (which indeed is the case, when we use ICMP PING for MSI generation – see 
Generating MSI without access to device config space), still we can just keep issuing the hypercall in a loop, 
and the chances of the MSI hitting when (one of) the hypercall handler will be at rep movsq are very high.

Now, let's assume the MSI we're generating is also for vector 0x82 – this means that the original hypercall  
handler will be interrupted at the rep movsq instruction, and the processor will execute another instance of 
the hypercall handler to service the fake (MSI-generated) hypercall. Of course, the processor will save and  
then restore all the CPU registers, so this should have no effect on the previous instance of the hypercall...

Except, however, that the hypercall returns status in the rax register, which means this very register will get 
modified by the execution of this (unexpected) additional hypercall. As a result, when the original hypercall  
handler execution will be resumed, the value of rax will be different21. Specifically, it's very likely that rax will 
contain the value of -ENOSYS22, which, when interpreted as unsigned integer is a very-large-number.

The changed  rax value will  not  affect  the  rep movsq  instruction that  was interrupted by the fake,  MSI-
triggered hypercall. But it will affect the next instruction, which copies rax to rcx, and then the next rep movsb 
instruction that is supposed to copy the remaining bytes. The  rep movsb will  now try to copy -ENOSYS 
bytes, causing a big overflow past the rdi address. Because, however, we're not interested in crashing Xen, 
but instead in some code execution, we will have to stop the copy operation much sooner before the huge 
rcx gets zeroed.

The logical way to stop the copy operation seems to be to place an unmapped page, directly after our input 
buffer. This, however, is not enough – when the Xen's copy_from_user() function touches the unmapped 
usermode page, the #PF exception is raised, which is handled by Xen #PF handler. The #PF handler detects  
that the #PF was raised inside copy_from_user() and transfers control to a special “error branch” inside 
copy_from_user() via  a  mechanism  called  fixup  tables23,  which  in  turn  tries  to  complete  the  copy 
operation by writing zeros to the destination buffer (as many of them, as there are remaing bytes to copy).

This zero-writing behavior is, of course, undesirable as it can lead only to a system crash (this time the #PF 
handler will not return to a .fixup section). It seems like the only option for the attacker, is to overwrite the IDT 
table  first,  in  order  to  make the #PF entry  in IDT to point  to the attacker's  shellcode.  Then,  when the  
overflowing continues, the #PF will sooner or later be raised, and the attacker's shellcode will get executed 
instead of the original #PF handler. For this approach to work, the IDT must be located below the address  
pointed by the rdi register, and not too far away from it...

The summary of the above scenario is depicted on the figure below.

20 The maximum input buffer we found, that was expected by an unprivileged Xen hypercall was just 144 bytes – it was the input  
argument for the do_domctl hypercall – not really that large, but given how slow MMIO memory is, it turned out to be just enough for  
the attack to succeed.

21 In fact, if the nested hypercall used hypercall_create_continution() function, then its side effect would include changing other register  
values, too. We, however, did not find this behavior to be of any help with exploitation due to the specific assembly code used 
between the two rep mov instructions.

22 It's very likely that the fake, MSI-triggered hypercall  will  return -ENOSYS, or some other -EXXX error code, because the input 
arguments are effectively random.

23 This “error branch” is marked by the .fixup section in the function's assembly code.
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Mastering the overflow

Using  the  trick  described  above,  we are  now  able  to  very  reliably trigger  an  overflow inside  the  Xen 
hypervisor, starting from the address held in the rdi register. The rdi register inside the copy_from_user() 
function points to the local hypervisor stack. Quite accidentally, it turned out that just after the Xen stack, the  
IDT table is often located, which, as described above is what we have been hoping for...

Unfortunately the exact location of the IDT table, depends on whether we're on the BSP processor, or on one 
of the AP processors. 

In case we're on the BSP processor, the IDT table is allocated as part of the .bss section, and is always after  
BSP stack, more or less 48 pages below. This means that the attacker must trash ca. 48 pages of memory  
before reaching the IDT.

On AP processors, the IDT seems to be very often located directly after the Xen stack. However this might  
not  always be the case,  as both the stack, and the IDT tables, are allocated from the heap inside the 
do_boot_cpu() function:

stack_base[cpu] = alloc_xenheap_pages(STACK_ORDER, 0);

idt_tables[cpu] = xmalloc_array(idt_entry_t, IDT_ENTRIES);

Thus, if we're unlucky, and if the heap is somehow fragmented24, the IDT might even be located above the 
stack, and the attacker won't be able to overwrite it.

24 The primary factor that might affect heap fragmentation, we believe, are the ACPI tables exposed by BIOS. We have observed that 
in case of Q45 and Q67 based systems, the data structures layout on the heap was such that AP processors could be exploited to  
yield code execution to an attacker, without making the system unstable. On the other hand, it was not so on Q57. The difference 
was most likely caused by different ACPI tables exposed on the latter system.
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The Exploit

The proof-of-concept exploit we have coded has two modes of operation: the BSP mode, and the AP mode. 

When used in the BSP mode, the exploit assumes the attacker's domain executes on CPU #0 (the BSP 
processor) and so delivers the MSI to LAPIC for this processor #0. Additionally the exploit uses the 48 pages 
of padding in the payload, because it has been determined that so long is the distance between the rdi (when 
used in  the copy_from_user()  called at  the beginning of  the hypercall  handler)  and the IDT table.  The 
shellcode executes as #PF handler.

When used in the AP mode, the exploit assumes we're on the CPU #1 (AP processor) 25 and so delivers the 
MSI accordingly. The exploit uses just 1 page long payload padding, because it has been determined that on 
our test Q45 system, the IDT is always so close to the  rdi address (this might not be the case on other 
systems, because of different heap allocation layout, that could be most likely influenced by the ACPI tables  
passed from BIOS). Because the overwrite is relatively small (ca. 4k bytes), the shellcode is able to recover  
the overwritten Xen stack, and so is able to resume normal execution of the system after the attack, but of  
course with some additional instructions executed for the advantage of the attacker (that might e.g. install a 
rootkit in the hypervisor...).

Improving the Exploit Reliability

One challenge for the attacker is to ensure that the MSI will be delivered to the same CPU on which the 
attacker's domain is also scheduled to run. This is necessary, because for the attack to work the original  
hypercall  handler  must be interrupted by the execution of  another  hypercall  handler  (triggered by MSI).  
Hence the two modes of the exploit discussed above.

Unfortunately it seems like it's not possible for the attacker to figure out on which physical CPU his or her  
domain is executing, and so there is no easy way for the attacker to choose the proper mode of the exploit...

To get around this problem, the attacker might use the following approach:

• Try to iteratively deliver MSIs to all the CPUs in the system (and at the same time to keep triggering  
the hypercall from the driver domain)

• Combine the “1-page” and “48-page” payloads into one universal payload.

A slight problem with this approach is that there is no guarantee that we could iteratively generate all the 
MSIs without being moved to another physical processor in the meantime. That would be not good, as the 
hypercall generation (via syscall instruction) would now be happening on a different processor then when we 
started the iterative delivery of MSIs. Nevertheless the vcpu migration to a different CPU should be a rare 
case, so it seems more of a theoretical problem, rather than a practical one.

All in all, it seems that on a system with correct heap layout (such as our Q45) we could achieve a very high  
success rate using the above scenario.

Summary

The presented exploit is very Xen-specific, and even distribution-specific (as the compiler configuration used 
to  build  Xen hypervisor  can impact  how the key assembly  code is  generated  –  see above).  It  shows, 
however,  how  seemingly  innocent  “theoretical  only”  problem  can  be  turned  into  a  reasonably  reliable 
practical exploit, if only the adversary can invest substantial amount of time and energy into the process of 
exploit development.

Needless to say, we're quite proud that we were able to demonstrate a complete exploitation process, from 
generating an MSI via scatter-gather tricks, to finally achieving code execution in the hypervisor context. This  
is probably the most complex exploit we have ever presented.

25 We have assumed the Q45 platform which has only 2 CPUs.
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Interrupt Remapping
Neo... nobody has ever done this before.

That's why it's going to work.

-- Trinity and Neo

The MSI Attacks Prevention via Interrupt Remapping

As part of the VT-d spec, Intel describes a mechanism, called Interrupt Remapping, that seems capable of  
protecting the system from all the previously mentioned MSI-based attacks.

When  Interrupt  Remapping  is  enabled  in  the  chipset,  all  incoming  interrupts  can  be  blocked  and/or  
translated, depending on their originating device (just like in the case of DMA remapping). Specifically, the  
system-software is  expected  to  fill  in  interrupt  remapping  tables,  for  each  device  domain,  which  would 
explicitly list all allowed interrupt vectors and formats available for those devices.

Even  though  the  interrupt  remapping  seems  vulnerable  to  the  BDF  spoofing  attack26 (just  like  DMA 
remapping is), still we believe it has a potential to prevent all the above-mentioned MSI attacks, because we 
anticipate that none of the interrupt vector used in our attacks should be allowed to  any devices in the 
system. In that case, BDF spoofing would not bring any advantage to the attacker, as there should be no 
device at all that the attacker might want to impersonate, which could deliver those dangerous interrupts, 
such as SIPI, syscall interrupts, or the #AC exception.

On the client side, only the very latest Sandy Bridge processors (released in Q1 2011) support Interrupt 
Remapping. On the server side, however, some advanced Xeon systems have had this support for at least 2  
years now.

The new MSI interrupt formats

When interrupt remapping is enabled, the devices are expected to generate MSIs in a new format, the so  
called Remappable Format, which is illustrated on the figure below:

The key difference between the new (remappable) MSI format vs. the old format (called compatibility format 
in the spec), is that the new format doesn't directly specify any properties of the generated MSI. Instead only  
a so called  handle is specified, that is interpreted as an index in the  interrupt remapping table, which is 
managed by the VMM and which is device- (domain-) specific. This way the device should have no way to  
generate MSIs with e.g. arbitrary vector.

26 BDF spoofing is a type of a  hardware attack against VT-d, where a malicious device generates PCIe packets with spoofed BDF 
address. We have also thoroughly researched such attacks, but hardware attacks are out of scope of this paper, which focuses on 
software attacks only.
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Interrupts in the compatibility format

For compatibility reasons, devices might still be allowed to generate interrupts in the compatibility format. 
According to the spec, this is allowed if both of the following conditions hold:

1. Extended Interrupt Mode (also called x2APIC) is not enabled,

2. The Compatibility Format Interrupt (CFI) field in the Global Command register is set,

In this case, interrupt remapping does not offer resistance from malicious interrupts - a device can generate 
arbitrary MSIs just as it was described in the previous chapters.

It seems like the system software should always switch to the x2APIC mode when running on an Interrupt  
Remapping capable system, which automatically guarantees that compatibility MSIs will be blocked.

Interrupt Remapping implementation in Xen

We  have  studied  how  the  Xen  hypervisor  configures  interrupt  remapping  to  protect  the  system  from 
untrusted driver domains. For each PCI device that is to be configured, Xen does the following:

1. Allocates an interrupt vector in the global IDT for this device,

2. Adds an entry to the Interrupt Remapping Table for this device (domain), so that it translates to the  
vector generated in the previous point,

3. Writes to the device's configuration space registers for MSI (MADDL, MADDH, MDAT), so that the 
device generates MSIs in a remapble format, with a proper index (handler).

The above procedure seems correct, because it only assigns the actual vectors that the devices need, and 
nothing more (such as vectors for SIPI, 0x82, or #AC). Thus, even though it seems like one device could use 
BDF spoofing to impersonate another device, it still would not allow to trigger any of the attacks presented in  
the previous chapters.

Bypassing Interrupt Remapping on Xen

Let's assume now that the attacker, as a result of controlling one of the driver domains in the system, is 
capable of modifying the system's Master Boot Record. This requirement might be trivial, or not, depending 
on the type of the driver domain the attacker controls:

• If the attacker controls a driver domain that has been assigned the  main disk controller, e.g.  the 
untrusted storage domain, as it is described in Qubes OS architecture27 specification [11], then the 
attacker can trivially modify the system's MBR.

• If the attacker controls a driver domain that has some other device assigned, e.g. a network device, 
or a GPU, it might be non-trivial for the attacker to figure out a practical way to compromise the  
system's MBR. We can imagine some potential  scenarios, that however haven't  been verified in 
practice by us yet, such as e.g. reflashing the NIC's firmware and forcing it to do DMA early on the  
system boot, overwriting in-memory MBR image. Possibility to execute such an attack would likely 
be very device-specific.

Now, assuming the attacker  managed to modify the system's MBR, it  should still  be impossible for  the 
attacker to compromise the system, if the system is well designed. This is because a well designed system 
should be using some form of trusted boot technology, specifically to prevent such attacks28 [2].

But, thanks to the interrupt-based attacks presented in this paper earlier,  the attacker might still  have a 
chance to attack the system. Specifically we have successfully tested the following attack against the Xen  
hypervisor:

27 Note that in Qubes architecture the storage domain is assumed to be untrusted, i.e. the attacker that controls it, still should not be  
able to compromise any other domain in the system. This might sound counter-intuitive, but nevertheless could be achieved with the 
help of cryptography and trusted boot technology.

28 Now it should be clear why VT-d and TXT could be thought as two elementary and most important building blocks for any modern 
system. VT-d allows to sandbox drivers, but is not complete without a DMA-proof trusted boot technology.
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1. The attacker  modifies  the  ACPI  DMAR tables,  so that  Xen thinks  the platform doesn't  support 
Interrupt Remapping (this can be done if the attacker controls the MBR)

2. Now, the system boots as usual, using TXT-based trusted boot implemented via tboot.

3. Xen initializes VT-d, but figures out there is no Interrupt Remapping support, so proceeds without it.

4. Now, the driver domain that the attacker controls can perform an MSI attack as described earlier in  
this paper.

Details on cheating Xen via ACPI DMAR manipulation

The ACPI DMAR table [1] contains a field called Flags with two bits of the following meaning (quoting literary 
the description from the VT-d spec):

• Bit 0: INTR_REMAP - If Clear, the platform does not support interrupt remapping. If Set, the platform 
supports interrupt remapping.

• Bit 1: X2APIC_OPT_OUT - For firmware compatibility reasons, platform firmware may Set this field 
to request system software to opt out of enabling Extended xAPIC (X2APIC) mode. This field is valid 
only when the INTR_REMAP field (bit 0) is Set. Since firmware is permitted to hand off platform to 
system software in legacy xAPIC mode, system software is required to check this field as Clear as  
part of detecting X2APIC mode support in the platform.

So, it seems like we could just modify those bits in the in-memory copy of the DMAR table, before the TXT-
launch, and force Xen not to enable Interrupt Remapping29. Unfortunately, it turned out that Xen doesn't 
interpret those fields at all.

So, we have analyzed how does Xen determines IR support, and we came up with a different cheating  
method, that works by removing the IOAPIC device from the Device Scope[] lists in DRHD tables for each 
remapping unit  (See  [1] again).  Apparently  this  confuses  Xen so much,  that  it  doesn't  enable  Interrupt  
Remapping, as shown in the xm dmesg logs:

(XEN) [VT-D]intremap.c:147: There is not a DRHD for IOAPIC 0x0 (id: 0x0)!
(XEN) Not enable x2APIC due to iommu_supports_eim fails!
(...)
(XEN) Intel VT-d Interrupt Remapping supported.
(XEN) [VT-D]iommu.c:1883: ioapic_to_iommu: ioapic 0x0 (id: 0x0) is NULL! Will not try to 
enable Interrupt Remapping. 

This has been tested on a Core i5 2500K processor (Sandy Bridge) and on Intel DQ67 board. The boot  
arguments to Xen were explicitly requiring IOMMU to be always enabled, or the boot to fail:

iommu=pv,verbose,required vtd=1

Xen has been loaded via a TXT-based boot via Intel's tboot. SENTER succeeded without any problem:

Intel(r) TXT Configuration Registers:
        STS: 0x00018091
            senter_done: TRUE

The SINIT module for Sandy Bridge processors

It should be noted that Intel hasn't yet officially published SINIT modules for Sandy Bridge processors. SINIT 
modules are a required element for TXT launch, and they are platform-specific. Without appropriate SINIT  
modules one cannot use TXT on a given platform. This opens it up for a number of attacks – in case above 
the attacker wouldn't even need to cheat the ACPI table, and instead could just subvert the xen.gz image.

In order to make this paper complete we wanted to test if our IR-disabling ACPI attack would work indeed,  
and so we have asked Intel to provide us with a required SINIT module for Sandy Bridge processors. Intel  
told us that they still don't have a “production” SINIT for Sandy Bridge processors, and instead provided us 
with a “pre-production” SINIT module, which is what we used for the above experiment.

Because the pre-production SINIT randomizes PCR registers after SENTER, we were not able to test if our 

29 It turned out that Xen doesn't explicitly clear the CFI bit (see Interrupts in the compatibility format), so disabling x2APIC mode and, 
clearing CFI before SENTER should be all that is required to force Xen to not enable Interrupt Remapping.
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DMAR modifications do not affect the PCR registers after TXT launch, however we see no reason why they 
could affect them. Indeed, in one of our previous attacks against Intel TXT [14], we have also modified ACPI 
table before SENTER, and the PCR registers remained intact. We have also looked at the tboot sources,  
and it  doesn't  seem like it  extended PCRs with  any hash of  the DMAR table (which would be difficult, 
because of the over-complex structure of ACPI tables).

On a side note, we think it is very strange that Intel still doesn't offer a production-ready SINIT modules for  
their flagship security technology, several months after the release of Sandy Bridge processors...

Summary

This  attack  that  tricks  Xen to  not  enable  Interrupt  Remapping  support  is  required  only  on  recent  Intel  
hardware  that  has  IR  support.  On  all  other  platforms  that  support  VT-d,  but  do  not  support  Interrupt 
Remapping, which seems to include all the client platforms except the latest Sandy Bridge processors, one 
can just attack VT-d using the MSI attacks described earlier in this paper.

The attack described in this chapter takes advantage of Xen careless programming, i.e. ignoring the fact that 
Interrupt Remapping is not available and still allowing to boot the system as if nothing happened (despite the 
iommu=reqiured boot option). However, one should not blame Xen for this mistake, as it has never been 
made clear that Interrupt Remapping is such a security-critical element of VT-d, potentially allowing for code 
execution in the hypervisor.
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Working with Vendors
A few weeks ago before publishing of this paper, we have provided a draft to Intel security team and a few  
Xen developers. 

Reaction from Intel

We've believed that Intel security team should be the primary contact point for discussing this vulnerability, 
because the attacks presented in this paper exploit flaws in the x86 architecture, rather than specific flaws in  
any VMM software.  Furthermore, Intel has been selling client VT-d enabled platforms since at least 2007, 
most of which being vulnerable to our MSI attacks, and yet none of the Intel specs or manuals made it clear  
that such platforms are vulnerable to potentially fatal MSI attacks.

We have thus expected that Intel would somehow officially recognize the problem we presented in the paper, 
issue a warning to customers, such as VMM vendors, and update their manuals and specs to indicate that IR  
is an absolutely required security element of any VT-d system.

Strangely, it doesn't seem Intel has done any of the above.

Two of the Intel engineers, involved with Xen.org development, have engaged, however, in preparing a patch 
against the attack we described in Bypassing Interrupt Remapping on Xen chapter – so not the actual MSI 
attacks, but rather an attack to be used on IR systems when the attacker somehow managed to compromise 
the  MBR.  The  patch  that  they  have  finally  proposed,  and  that  was  accepted  by  Xen.org  [16],  was 
unfortunately not optimal (as described below), because Intel wanted to allow TXT on non-IR platforms. This 
shows a rather strange logic of thinking, because on the one hand Intel seems to be ignoring the problem of  
the attacks presented in this paper (apparently because they now have IR-capable hardware), yet at the  
same time they attempt to tailor patches to allow “secure” TXT on non-IR hardware, which is hardly possible 
given the VT-d vulnerability to MSI attacks.

Reaction from Xen.org

We have also made a draft of this paper available to select Xen developers. We have done it because our 
paper  specifically targets  the Xen hypervisor,  and also because we believed that  even though the MSI 
attacks exploit a hardware problem, still some reasonably effective software patches are possible to come up 
with for Xen. We have discuss this with a few Xen developers and, as a result, an MSI-blocking patch has  
been created by Keir Fraser shortly afterwards [16].

The patch works by adding extra code at the beginning of 0x80 and 0x82 interrupt handlers and ensures that 
the interrupt has  not been generated by a device by checking the LAPIC status registers. Additionally the 
patch blocks delivery of #AC exception from any device30. The patch seems to provide a reasonably good 
prevention against the attacks presented in this paper (although the attacker can still trigger a DoS attack  
against the whole system). Yet, there still might be other MSI-based attacks that this patch not prevents, 
such as those we briefly speculated about on page 13.

Another patch was to prevent a potential attack that tricks Xen into not enabling IR even if running on a 
hardware that  supports  it,  as described in  Bypassing Interrupt  Remapping on Xen.  There have been a 
discussion between Xen.org developers whether  to always fail  Xen boot if  IR cannot be enabled and if 
iommu=required was passed as a Xen boot option, vs. whether to fail it only if the previous conditions hold 
but only on platforms that supports IR. 

The argument for the first approach, i.e. to always abort Xen boot if iommu=required has been passed and 
if IR couldn't be enabled for any reason, was that when the users pass iommu=required their intention is to 
ensure IOMMU will always work and provide required security isolation. So, it should be irrelevant whether  
IR couldn't be enabled because somebody tampered with ACPI tables before boot, or because the platform 
simply doesn't support it – in any case IOMMU/VT-d would not be secure, and we should refuse to boot.

The arguments for failing the boot only on non-IR systems, that were raised by Intel engineers, were that the 
default  TXT-based loader for  Xen requires  iommu=required option (which is reasonable) and so TXT 
would no longer be usable on non-IR systems (so most client systems out  there today). This argument  
seems to ignore the fact that it has just been demonstrated that VT-d on non-IR systems is insecure.

30 The #AC could be easily blocked by setting the LAPIC priority register to 0x20, so blocking all the vectors in the range 0x0-0x1f,  
including #AC. The same approach couldn't, unfortunately, be used to block 0x80 and 0x82 delivery, because setting LAPIC priority  
so high would also block many useful vectors legitimately assigned to various devices.
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Reaction from other vendors

We have not attempted to contact any other vendors except Intel and Xen.org. The primary reason for this  
was  that  we  have  naturally  assumed  that  it  should  be  Intel's  responsibility,  as  the  problem has  been 
discovered in Intel's products. At the same time, we don't have resources to contact and work with every  
potentially affected vendor who might be using VT-d. Just to give an impression of the amount of resources  
such a “Samaritan” action would require, we should mention that we have exchanged around 100 emails  
with Xen.org developers within the last 3 weeks discussing this problem and patching approaches...
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Final words
You take the blue pill, the story ends, you wake up in your bed and believe whatever you want to believe.  
You take the red pill, you stay in Wonderland, and I show you how deep the rabbit hole goes.

-- Morpheus

This paper demonstrates that Interrupt Remapping is a security-critical component of an IOMMU technology 
for x86 platforms. It shows that all the VT-d enabled systems that do not support Interrupt Remapping are  
prone to various security attacks, including arbitrary code execution in the hypervisor. None of the Intel specs 
we looked at made it clear that Interrupt Remapping is such a security-critical component of VT-d.

While  the  interrupt-based  attacks  might  seem  “just  theoretical”  and  so  innocent  in  practice,  we  have 
demonstrated  that,  given  enough  determination  and  skills,  it  is  often  possible  to  turn  even  the  most  
“impossible” attack into a real and reliable exploit.

As far as we are aware, this is the first publication showing the practical security problems that could arise 
from lack of Interrupt Remapping.

We shall  point  out  it's  not  the first  time Intel  is  selling a  half-baked security  solution without  informing  
customers about  it.  More than two years ago we have presented our  first  software attack against  Intel  
Trusted Execution Technology  [17], which exploited a problem with SMM mode being over-privileged and 
surviving the TXT launch sequence. Intel responded that the proper solution to our attack was to use a so 
called SMM Transfer Monitor (STM) to sandbox a potentially malicious SMM code. Yet Intel never made it 
clear in their specs or manuals that TXT without STM is vulnerable to software attacks as we demonstrated.
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